cog/Frameworks/GME/gme/Sap_Apu.cpp

340 lines
8.5 KiB
C++

// Game_Music_Emu $vers. http://www.slack.net/~ant/
#include "Sap_Apu.h"
/* Copyright (C) 2006-2008 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
int const max_frequency = 12000; // pure waves above this frequency are silenced
static void gen_poly( unsigned mask, int count, byte out [] )
{
unsigned n = 1;
do
{
int bits = 0;
int b = 0;
do
{
// implemented using "Galios configuration"
bits |= (n & 1) << b;
n = (n >> 1) ^ (mask * (n & 1));
}
while ( b++ < 7 );
*out++ = bits;
}
while ( --count );
}
// poly5
int const poly5_len = (1 << 5) - 1;
unsigned const poly5_mask = (1U << poly5_len) - 1;
unsigned const poly5 = 0x167C6EA1;
inline unsigned run_poly5( unsigned in, int shift )
{
return (in << shift & poly5_mask) | (in >> (poly5_len - shift));
}
#define POLY_MASK( width, tap1, tap2 ) \
((1U << (width - 1 - tap1)) | (1U << (width - 1 - tap2)))
Sap_Apu_Impl::Sap_Apu_Impl()
{
gen_poly( POLY_MASK( 4, 1, 0 ), sizeof poly4, poly4 );
gen_poly( POLY_MASK( 9, 5, 0 ), sizeof poly9, poly9 );
gen_poly( POLY_MASK( 17, 5, 0 ), sizeof poly17, poly17 );
if ( 0 ) // comment out to recauculate poly5 constant
{
byte poly5 [4];
gen_poly( POLY_MASK( 5, 2, 0 ), sizeof poly5, poly5 );
unsigned n = poly5 [3] * 0x1000000 + poly5 [2] * 0x10000 +
poly5 [1] * 0x100 + poly5 [0];
unsigned rev = n & 1;
for ( int i = 1; i < poly5_len; i++ )
rev |= (n >> i & 1) << (poly5_len - i);
dprintf( "poly5: 0x%08lX\n", rev );
}
}
void Sap_Apu::set_output( Blip_Buffer* b )
{
for ( int i = 0; i < osc_count; ++i )
set_output( i, b );
}
Sap_Apu::Sap_Apu()
{
impl = NULL;
set_output( NULL );
}
void Sap_Apu::reset( Sap_Apu_Impl* new_impl )
{
impl = new_impl;
last_time = 0;
poly5_pos = 0;
poly4_pos = 0;
polym_pos = 0;
control = 0;
for ( int i = 0; i < osc_count; i++ )
memset( &oscs [i], 0, offsetof (osc_t,output) );
}
inline void Sap_Apu::calc_periods()
{
// 15/64 kHz clock
int divider = 28;
if ( this->control & 1 )
divider = 114;
for ( int i = 0; i < osc_count; i++ )
{
osc_t* const osc = &oscs [i];
int const osc_reload = osc->regs [0]; // cache
int period = (osc_reload + 1) * divider;
static byte const fast_bits [osc_count] = { 1 << 6, 1 << 4, 1 << 5, 1 << 3 };
if ( this->control & fast_bits [i] )
{
period = osc_reload + 4;
if ( i & 1 )
{
period = osc_reload * 0x100 + osc [-1].regs [0] + 7;
if ( !(this->control & fast_bits [i - 1]) )
period = (period - 6) * divider;
if ( (osc [-1].regs [1] & 0x1F) > 0x10 )
dprintf( "Use of slave channel in 16-bit mode not supported\n" );
}
}
osc->period = period;
}
}
void Sap_Apu::run_until( blip_time_t end_time )
{
calc_periods();
Sap_Apu_Impl* const impl = this->impl; // cache
// 17/9-bit poly selection
byte const* polym = impl->poly17;
int polym_len = poly17_len;
if ( this->control & 0x80 )
{
polym_len = poly9_len;
polym = impl->poly9;
}
polym_pos %= polym_len;
for ( int i = 0; i < osc_count; i++ )
{
osc_t* const osc = &oscs [i];
blip_time_t time = last_time + osc->delay;
blip_time_t const period = osc->period;
// output
Blip_Buffer* output = osc->output;
if ( output )
{
int const osc_control = osc->regs [1]; // cache
int volume = (osc_control & 0x0F) * 2;
if ( !volume || osc_control & 0x10 || // silent, DAC mode, or inaudible frequency
((osc_control & 0xA0) == 0xA0 && period < 1789773 / 2 / max_frequency) )
{
if ( !(osc_control & 0x10) )
volume >>= 1; // inaudible frequency = half volume
int delta = volume - osc->last_amp;
if ( delta )
{
osc->last_amp = volume;
output->set_modified();
impl->synth.offset( last_time, delta, output );
}
// TODO: doesn't maintain high pass flip-flop (very minor issue)
}
else
{
// high pass
static byte const hipass_bits [osc_count] = { 1 << 2, 1 << 1, 0, 0 };
blip_time_t period2 = 0; // unused if no high pass
blip_time_t time2 = end_time;
if ( this->control & hipass_bits [i] )
{
period2 = osc [2].period;
time2 = last_time + osc [2].delay;
if ( osc->invert )
{
// trick inner wave loop into inverting output
osc->last_amp -= volume;
volume = -volume;
}
}
if ( time < end_time || time2 < end_time )
{
// poly source
static byte const poly1 [] = { 0x55, 0x55 }; // square wave
byte const* poly = poly1;
int poly_len = 8 * sizeof poly1; // can be just 2 bits, but this is faster
int poly_pos = osc->phase & 1;
int poly_inc = 1;
if ( !(osc_control & 0x20) )
{
poly = polym;
poly_len = polym_len;
poly_pos = polym_pos;
if ( osc_control & 0x40 )
{
poly = impl->poly4;
poly_len = poly4_len;
poly_pos = poly4_pos;
}
poly_inc = period % poly_len;
poly_pos = (poly_pos + osc->delay) % poly_len;
}
poly_inc -= poly_len; // allows more optimized inner loop below
// square/poly5 wave
unsigned wave = poly5;
check( poly5 & 1 ); // low bit is set for pure wave
int poly5_inc = 0;
if ( !(osc_control & 0x80) )
{
wave = run_poly5( wave, (osc->delay + poly5_pos) % poly5_len );
poly5_inc = period % poly5_len;
}
output->set_modified();
// Run wave and high pass interleved with each catching up to the other.
// Disabled high pass has no performance effect since inner wave loop
// makes no compromise for high pass, and only runs once in that case.
int osc_last_amp = osc->last_amp;
do
{
// run high pass
if ( time2 < time )
{
int delta = -osc_last_amp;
if ( volume < 0 )
delta += volume;
if ( delta )
{
osc_last_amp += delta - volume;
volume = -volume;
impl->synth.offset( time2, delta, output );
}
}
while ( time2 <= time ) // must advance *past* time to avoid hang
time2 += period2;
// run wave
blip_time_t end = end_time;
if ( end > time2 )
end = time2;
while ( time < end )
{
if ( wave & 1 )
{
int amp = volume * (poly [poly_pos >> 3] >> (poly_pos & 7) & 1);
if ( (poly_pos += poly_inc) < 0 )
poly_pos += poly_len;
int delta = amp - osc_last_amp;
if ( delta )
{
osc_last_amp = amp;
impl->synth.offset( time, delta, output );
}
}
wave = run_poly5( wave, poly5_inc );
time += period;
}
}
while ( time < end_time || time2 < end_time );
osc->phase = poly_pos;
osc->last_amp = osc_last_amp;
}
osc->invert = 0;
if ( volume < 0 )
{
// undo inversion trickery
osc->last_amp -= volume;
osc->invert = 1;
}
}
}
// maintain divider
blip_time_t remain = end_time - time;
if ( remain > 0 )
{
int count = (remain + period - 1) / period;
osc->phase ^= count;
time += count * period;
}
osc->delay = time - end_time;
}
// advance polies
blip_time_t duration = end_time - last_time;
last_time = end_time;
poly4_pos = (poly4_pos + duration) % poly4_len;
poly5_pos = (poly5_pos + duration) % poly5_len;
polym_pos += duration; // will get %'d on next call
}
void Sap_Apu::write_data( blip_time_t time, int addr, int data )
{
run_until( time );
int i = (addr - 0xD200) >> 1;
if ( (unsigned) i < osc_count )
{
oscs [i].regs [addr & 1] = data;
}
else if ( addr == 0xD208 )
{
control = data;
}
else if ( addr == 0xD209 )
{
oscs [0].delay = 0;
oscs [1].delay = 0;
oscs [2].delay = 0;
oscs [3].delay = 0;
}
/*
// TODO: are polynomials reset in this case?
else if ( addr == 0xD20F )
{
if ( (data & 3) == 0 )
polym_pos = 0;
}
*/
}
void Sap_Apu::end_frame( blip_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
last_time -= end_time;
assert( last_time >= 0 );
}