165 lines
4.8 KiB
Plaintext
165 lines
4.8 KiB
Plaintext
// ---------------------------------------------------------------------------
|
|
// This file is part of reSID, a MOS6581 SID emulator engine.
|
|
// Copyright (C) 2010 Dag Lem <resid@nimrod.no>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
// ---------------------------------------------------------------------------
|
|
|
|
#ifndef RESID_EXTFILT_H
|
|
#define RESID_EXTFILT_H
|
|
|
|
#include "resid-config.h"
|
|
|
|
namespace reSID
|
|
{
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The audio output stage in a Commodore 64 consists of two STC networks,
|
|
// a low-pass filter with 3-dB frequency 16kHz followed by a high-pass
|
|
// filter with 3-dB frequency 1.6Hz (the latter provided an audio equipment
|
|
// input impedance of 10kOhm).
|
|
// The STC networks are connected with a BJT supposedly meant to act as
|
|
// a unity gain buffer, which is not really how it works. A more elaborate
|
|
// model would include the BJT, however DC circuit analysis yields BJT
|
|
// base-emitter and emitter-base impedances sufficiently low to produce
|
|
// additional low-pass and high-pass 3dB-frequencies in the order of hundreds
|
|
// of kHz. This calls for a sampling frequency of several MHz, which is far
|
|
// too high for practical use.
|
|
// ----------------------------------------------------------------------------
|
|
class ExternalFilter
|
|
{
|
|
public:
|
|
ExternalFilter();
|
|
|
|
void enable_filter(bool enable);
|
|
|
|
void clock(short Vi);
|
|
void clock(cycle_count delta_t, short Vi);
|
|
void reset();
|
|
|
|
// Audio output (16 bits).
|
|
short output();
|
|
|
|
protected:
|
|
// Filter enabled.
|
|
bool enabled;
|
|
|
|
// State of filters (27 bits).
|
|
int Vlp; // lowpass
|
|
int Vhp; // highpass
|
|
|
|
// Cutoff frequencies.
|
|
int w0lp_1_s7;
|
|
int w0hp_1_s17;
|
|
|
|
friend class SID;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Inline functions.
|
|
// The following functions are defined inline because they are called every
|
|
// time a sample is calculated.
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if RESID_INLINING || defined(RESID_EXTFILT_CC)
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking - 1 cycle.
|
|
// ----------------------------------------------------------------------------
|
|
RESID_INLINE
|
|
void ExternalFilter::clock(short Vi)
|
|
{
|
|
// This is handy for testing.
|
|
if (unlikely(!enabled)) {
|
|
// Vo = Vlp - Vhp;
|
|
Vlp = Vi << 11;
|
|
Vhp = 0;
|
|
return;
|
|
}
|
|
|
|
// Calculate filter outputs.
|
|
// Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
|
|
// Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
|
|
// Vo = Vlp - Vhp;
|
|
|
|
int dVlp = w0lp_1_s7*((Vi << 11) - Vlp) >> 7;
|
|
int dVhp = w0hp_1_s17*(Vlp - Vhp) >> 17;
|
|
Vlp += dVlp;
|
|
Vhp += dVhp;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking - delta_t cycles.
|
|
// ----------------------------------------------------------------------------
|
|
RESID_INLINE
|
|
void ExternalFilter::clock(cycle_count delta_t, short Vi)
|
|
{
|
|
// This is handy for testing.
|
|
if (unlikely(!enabled)) {
|
|
// Vo = Vlp - Vhp;
|
|
Vlp = Vi << 11;
|
|
Vhp = 0;
|
|
return;
|
|
}
|
|
|
|
// Maximum delta cycles for the external filter to work satisfactorily
|
|
// is approximately 8.
|
|
cycle_count delta_t_flt = 8;
|
|
|
|
while (delta_t) {
|
|
if (unlikely(delta_t < delta_t_flt)) {
|
|
delta_t_flt = delta_t;
|
|
}
|
|
|
|
// Calculate filter outputs.
|
|
// Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
|
|
// Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
|
|
// Vo = Vlp - Vhp;
|
|
|
|
int dVlp = (w0lp_1_s7*delta_t_flt >> 3)*((Vi << 11) - Vlp) >> 4;
|
|
int dVhp = (w0hp_1_s17*delta_t_flt >> 3)*(Vlp - Vhp) >> 14;
|
|
Vlp += dVlp;
|
|
Vhp += dVhp;
|
|
|
|
delta_t -= delta_t_flt;
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Audio output (16 bits).
|
|
// ----------------------------------------------------------------------------
|
|
RESID_INLINE
|
|
short ExternalFilter::output()
|
|
{
|
|
// Saturated arithmetics to guard against 16 bit sample overflow.
|
|
const int half = 1 << 15;
|
|
int Vo = (Vlp - Vhp) >> 11;
|
|
if (Vo >= half) {
|
|
Vo = half - 1;
|
|
}
|
|
else if (Vo < -half) {
|
|
Vo = -half;
|
|
}
|
|
return Vo;
|
|
}
|
|
|
|
#endif // RESID_INLINING || defined(RESID_EXTFILT_CC)
|
|
|
|
} // namespace reSID
|
|
|
|
#endif // not RESID_EXTFILT_H
|