cog/Frameworks/libsidplay/sidplay-residfp-code/.svn/pristine/ca/ca0da6fbaea829065fbfd74c55e...

557 lines
20 KiB
Plaintext

// ---------------------------------------------------------------------------
// This file is part of reSID, a MOS6581 SID emulator engine.
// Copyright (C) 2010 Dag Lem <resid@nimrod.no>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// ---------------------------------------------------------------------------
#ifndef RESID_WAVE_H
#define RESID_WAVE_H
#include "resid-config.h"
namespace reSID
{
// ----------------------------------------------------------------------------
// A 24 bit accumulator is the basis for waveform generation. FREQ is added to
// the lower 16 bits of the accumulator each cycle.
// The accumulator is set to zero when TEST is set, and starts counting
// when TEST is cleared.
// The noise waveform is taken from intermediate bits of a 23 bit shift
// register. This register is clocked by bit 19 of the accumulator.
// ----------------------------------------------------------------------------
class WaveformGenerator
{
public:
WaveformGenerator();
void set_sync_source(WaveformGenerator*);
void set_chip_model(chip_model model);
void clock();
void clock(cycle_count delta_t);
void synchronize();
void reset();
void writeFREQ_LO(reg8);
void writeFREQ_HI(reg8);
void writePW_LO(reg8);
void writePW_HI(reg8);
void writeCONTROL_REG(reg8);
reg8 readOSC();
// 12-bit waveform output.
short output();
// Calculate and set waveform output value.
void set_waveform_output();
void set_waveform_output(cycle_count delta_t);
protected:
void clock_shift_register();
void write_shift_register();
void reset_shift_register();
void set_noise_output();
const WaveformGenerator* sync_source;
WaveformGenerator* sync_dest;
reg24 accumulator;
// Tell whether the accumulator MSB was set high on this cycle.
bool msb_rising;
// Fout = (Fn*Fclk/16777216)Hz
// reg16 freq;
reg24 freq;
// PWout = (PWn/40.95)%
reg12 pw;
reg24 shift_register;
// Remaining time to fully reset shift register.
cycle_count shift_register_reset;
// Emulation of pipeline causing bit 19 to clock the shift register.
cycle_count shift_pipeline;
// Helper variables for waveform table lookup.
reg24 ring_msb_mask;
unsigned short no_noise;
unsigned short noise_output;
unsigned short no_noise_or_noise_output;
unsigned short no_pulse;
unsigned short pulse_output;
// The control register right-shifted 4 bits; used for waveform table lookup.
reg8 waveform;
// The remaining control register bits.
reg8 test;
reg8 ring_mod;
reg8 sync;
// The gate bit is handled by the EnvelopeGenerator.
// DAC input.
reg12 waveform_output;
// Fading time for floating DAC input (waveform 0).
cycle_count floating_output_ttl;
chip_model sid_model;
// Sample data for waveforms, not including noise.
unsigned short* wave;
static unsigned short model_wave[2][8][1 << 12];
// DAC lookup tables.
static unsigned short model_dac[2][1 << 12];
friend class Voice;
friend class SID;
};
// ----------------------------------------------------------------------------
// Inline functions.
// The following functions are defined inline because they are called every
// time a sample is calculated.
// ----------------------------------------------------------------------------
#if RESID_INLINING || defined(RESID_WAVE_CC)
// ----------------------------------------------------------------------------
// SID clocking - 1 cycle.
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::clock()
{
if (unlikely(test)) {
// Count down time to fully reset shift register.
if (unlikely(shift_register_reset) && unlikely(!--shift_register_reset)) {
reset_shift_register();
}
// The test bit sets pulse high.
pulse_output = 0xfff;
}
else {
// Calculate new accumulator value;
reg24 accumulator_next = (accumulator + freq) & 0xffffff;
reg24 accumulator_bits_set = ~accumulator & accumulator_next;
accumulator = accumulator_next;
// Check whether the MSB is set high. This is used for synchronization.
msb_rising = (accumulator_bits_set & 0x800000) ? true : false;
// Shift noise register once for each time accumulator bit 19 is set high.
// The shift is delayed 2 cycles.
if (unlikely(accumulator_bits_set & 0x080000)) {
// Pipeline: Detect rising bit, shift phase 1, shift phase 2.
shift_pipeline = 2;
}
else if (unlikely(shift_pipeline) && !--shift_pipeline) {
clock_shift_register();
}
}
}
// ----------------------------------------------------------------------------
// SID clocking - delta_t cycles.
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::clock(cycle_count delta_t)
{
if (unlikely(test)) {
// Count down time to fully reset shift register.
if (shift_register_reset) {
shift_register_reset -= delta_t;
if (unlikely(shift_register_reset <= 0)) {
reset_shift_register();
}
}
// The test bit sets pulse high.
pulse_output = 0xfff;
}
else {
// Calculate new accumulator value;
reg24 delta_accumulator = delta_t*freq;
reg24 accumulator_next = (accumulator + delta_accumulator) & 0xffffff;
reg24 accumulator_bits_set = ~accumulator & accumulator_next;
accumulator = accumulator_next;
// Check whether the MSB is set high. This is used for synchronization.
msb_rising = (accumulator_bits_set & 0x800000) ? true : false;
// NB! Any pipelined shift register clocking from single cycle clocking
// will be lost. It is not worth the trouble to flush the pipeline here.
// Shift noise register once for each time accumulator bit 19 is set high.
// Bit 19 is set high each time 2^20 (0x100000) is added to the accumulator.
reg24 shift_period = 0x100000;
while (delta_accumulator) {
if (likely(delta_accumulator < shift_period)) {
shift_period = delta_accumulator;
// Determine whether bit 19 is set on the last period.
// NB! Requires two's complement integer.
if (likely(shift_period <= 0x080000)) {
// Check for flip from 0 to 1.
if (((accumulator - shift_period) & 0x080000) || !(accumulator & 0x080000))
{
break;
}
}
else {
// Check for flip from 0 (to 1 or via 1 to 0) or from 1 via 0 to 1.
if (((accumulator - shift_period) & 0x080000) && !(accumulator & 0x080000))
{
break;
}
}
}
// Shift the noise/random register.
// NB! The two-cycle pipeline delay is only modeled for 1 cycle clocking.
clock_shift_register();
delta_accumulator -= shift_period;
}
// Calculate pulse high/low.
// NB! The one-cycle pipeline delay is only modeled for 1 cycle clocking.
pulse_output = (accumulator >> 12) >= pw ? 0xfff : 0x000;
}
}
// ----------------------------------------------------------------------------
// Synchronize oscillators.
// This must be done after all the oscillators have been clock()'ed since the
// oscillators operate in parallel.
// Note that the oscillators must be clocked exactly on the cycle when the
// MSB is set high for hard sync to operate correctly. See SID::clock().
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::synchronize()
{
// A special case occurs when a sync source is synced itself on the same
// cycle as when its MSB is set high. In this case the destination will
// not be synced. This has been verified by sampling OSC3.
if (unlikely(msb_rising) && sync_dest->sync && !(sync && sync_source->msb_rising)) {
sync_dest->accumulator = 0;
}
}
// ----------------------------------------------------------------------------
// Waveform output.
// The output from SID 8580 is delayed one cycle compared to SID 6581;
// this is only modeled for single cycle clocking (see sid.cc).
// ----------------------------------------------------------------------------
// No waveform:
// When no waveform is selected, the DAC input is floating.
//
// Triangle:
// The upper 12 bits of the accumulator are used.
// The MSB is used to create the falling edge of the triangle by inverting
// the lower 11 bits. The MSB is thrown away and the lower 11 bits are
// left-shifted (half the resolution, full amplitude).
// Ring modulation substitutes the MSB with MSB EOR sync_source MSB.
//
// Sawtooth:
// The output is identical to the upper 12 bits of the accumulator.
//
// Pulse:
// The upper 12 bits of the accumulator are used.
// These bits are compared to the pulse width register by a 12 bit digital
// comparator; output is either all one or all zero bits.
// The pulse setting is delayed one cycle after the compare; this is only
// modeled for single cycle clocking.
//
// The test bit, when set to one, holds the pulse waveform output at 0xfff
// regardless of the pulse width setting.
//
// Noise:
// The noise output is taken from intermediate bits of a 23-bit shift register
// which is clocked by bit 19 of the accumulator.
// The shift is delayed 2 cycles after bit 19 is set high; this is only
// modeled for single cycle clocking.
//
// Operation: Calculate EOR result, shift register, set bit 0 = result.
//
// reset -------------------------------------------
// | | |
// test--OR-->EOR<-- |
// | | |
// 2 2 2 1 1 1 1 1 1 1 1 1 1 |
// Register bits: 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 <---
// | | | | | | | |
// Waveform bits: 1 1 9 8 7 6 5 4
// 1 0
//
// The low 4 waveform bits are zero (grounded).
//
RESID_INLINE void WaveformGenerator::clock_shift_register()
{
// bit0 = (bit22 | test) ^ bit17
reg24 bit0 = ((shift_register >> 22) ^ (shift_register >> 17)) & 0x1;
shift_register = ((shift_register << 1) | bit0) & 0x7fffff;
// New noise waveform output.
set_noise_output();
}
RESID_INLINE void WaveformGenerator::write_shift_register()
{
// Write changes to the shift register output caused by combined waveforms
// back into the shift register.
// A bit once set to zero cannot be changed, hence the and'ing.
// FIXME: Write test program to check the effect of 1 bits and whether
// neighboring bits are affected.
shift_register &=
~((1<<20)|(1<<18)|(1<<14)|(1<<11)|(1<<9)|(1<<5)|(1<<2)|(1<<0)) |
((waveform_output & 0x800) << 9) | // Bit 11 -> bit 20
((waveform_output & 0x400) << 8) | // Bit 10 -> bit 18
((waveform_output & 0x200) << 5) | // Bit 9 -> bit 14
((waveform_output & 0x100) << 3) | // Bit 8 -> bit 11
((waveform_output & 0x080) << 2) | // Bit 7 -> bit 9
((waveform_output & 0x040) >> 1) | // Bit 6 -> bit 5
((waveform_output & 0x020) >> 3) | // Bit 5 -> bit 2
((waveform_output & 0x010) >> 4); // Bit 4 -> bit 0
noise_output &= waveform_output;
no_noise_or_noise_output = no_noise | noise_output;
}
RESID_INLINE void WaveformGenerator::reset_shift_register()
{
shift_register = 0x7fffff;
shift_register_reset = 0;
// New noise waveform output.
set_noise_output();
}
RESID_INLINE void WaveformGenerator::set_noise_output()
{
noise_output =
((shift_register & 0x100000) >> 9) |
((shift_register & 0x040000) >> 8) |
((shift_register & 0x004000) >> 5) |
((shift_register & 0x000800) >> 3) |
((shift_register & 0x000200) >> 2) |
((shift_register & 0x000020) << 1) |
((shift_register & 0x000004) << 3) |
((shift_register & 0x000001) << 4);
no_noise_or_noise_output = no_noise | noise_output;
}
// Combined waveforms:
// By combining waveforms, the bits of each waveform are effectively short
// circuited. A zero bit in one waveform will result in a zero output bit
// (thus the infamous claim that the waveforms are AND'ed).
// However, a zero bit in one waveform may also affect the neighboring bits
// in the output.
//
// Example:
//
// 1 1
// Bit # 1 0 9 8 7 6 5 4 3 2 1 0
// -----------------------
// Sawtooth 0 0 0 1 1 1 1 1 1 0 0 0
//
// Triangle 0 0 1 1 1 1 1 1 0 0 0 0
//
// AND 0 0 0 1 1 1 1 1 0 0 0 0
//
// Output 0 0 0 0 1 1 1 0 0 0 0 0
//
//
// Re-vectorized die photographs reveal the mechanism behind this behavior.
// Each waveform selector bit acts as a switch, which directly connects
// internal outputs into the waveform DAC inputs as follows:
//
// * Noise outputs the shift register bits to DAC inputs as described above.
// Each output is also used as input to the next bit when the shift register
// is shifted.
// * Pulse connects a single line to all DAC inputs. The line is connected to
// either 5V (pulse on) or 0V (pulse off) at bit 11, and ends at bit 0.
// * Triangle connects the upper 11 bits of the (MSB EOR'ed) accumulator to the
// DAC inputs, so that DAC bit 0 = 0, DAC bit n = accumulator bit n - 1.
// * Sawtooth connects the upper 12 bits of the accumulator to the DAC inputs,
// so that DAC bit n = accumulator bit n. Sawtooth blocks out the MSB from
// the EOR used to generate the triangle waveform.
//
// We can thus draw the following conclusions:
//
// * The shift register may be written to by combined waveforms.
// * The pulse waveform interconnects all bits in combined waveforms via the
// pulse line.
// * The combination of triangle and sawtooth interconnects neighboring bits
// of the sawtooth waveform.
//
// This behavior would be quite difficult to model exactly, since the short
// circuits are not binary, but are subject to analog effects. Tests show that
// minor (1 bit) differences can actually occur in the output from otherwise
// identical samples from OSC3 when waveforms are combined. To further
// complicate the situation the output changes slightly with time (more
// neighboring bits are successively set) when the 12-bit waveform
// registers are kept unchanged.
//
// The output is instead approximated by using the upper bits of the
// accumulator as an index to look up the combined output in a table
// containing actual combined waveform samples from OSC3.
// These samples are 8 bit, so 4 bits of waveform resolution is lost.
// All OSC3 samples are taken with FREQ=0x1000, adding a 1 to the upper 12
// bits of the accumulator each cycle for a sample period of 4096 cycles.
//
// Sawtooth+Triangle:
// The accumulator is used to look up an OSC3 sample.
//
// Pulse+Triangle:
// The accumulator is used to look up an OSC3 sample. When ring modulation is
// selected, the accumulator MSB is substituted with MSB EOR sync_source MSB.
//
// Pulse+Sawtooth:
// The accumulator is used to look up an OSC3 sample.
// The sample is output if the pulse output is on.
//
// Pulse+Sawtooth+Triangle:
// The accumulator is used to look up an OSC3 sample.
// The sample is output if the pulse output is on.
//
// Combined waveforms including noise:
// All waveform combinations including noise output zero after a few cycles,
// since the waveform bits are and'ed into the shift register via the shift
// register outputs.
RESID_INLINE
void WaveformGenerator::set_waveform_output()
{
// Set output value.
if (likely(waveform)) {
// The bit masks no_pulse and no_noise are used to achieve branch-free
// calculation of the output value.
int ix = (accumulator ^ (sync_source->accumulator & ring_msb_mask)) >> 12;
waveform_output =
wave[ix] & (no_pulse | pulse_output) & no_noise_or_noise_output;
if (unlikely(waveform > 0x8)) {
// Combined waveforms write to the shift register.
write_shift_register();
}
}
else {
// Age floating DAC input.
if (likely(floating_output_ttl) && unlikely(!--floating_output_ttl)) {
waveform_output = 0;
}
}
// The pulse level is defined as (accumulator >> 12) >= pw ? 0xfff : 0x000.
// The expression -((accumulator >> 12) >= pw) & 0xfff yields the same
// results without any branching (and thus without any pipeline stalls).
// NB! This expression relies on that the result of a boolean expression
// is either 0 or 1, and furthermore requires two's complement integer.
// A few more cycles may be saved by storing the pulse width left shifted
// 12 bits, and dropping the and with 0xfff (this is valid since pulse is
// used as a bit mask on 12 bit values), yielding the expression
// -(accumulator >= pw24). However this only results in negligible savings.
// The result of the pulse width compare is delayed one cycle.
// Push next pulse level into pulse level pipeline.
pulse_output = -((accumulator >> 12) >= pw) & 0xfff;
}
RESID_INLINE
void WaveformGenerator::set_waveform_output(cycle_count delta_t)
{
// Set output value.
if (likely(waveform)) {
// The bit masks no_pulse and no_noise are used to achieve branch-free
// calculation of the output value.
int ix = (accumulator ^ (sync_source->accumulator & ring_msb_mask)) >> 12;
waveform_output =
wave[ix] & (no_pulse | pulse_output) & no_noise_or_noise_output;
if (unlikely(waveform > 0x8)) {
// Combined waveforms write to the shift register.
// NB! Since cycles are skipped in delta_t clocking, writes will be
// missed. Single cycle clocking must be used for 100% correct operation.
write_shift_register();
}
}
else {
if (likely(floating_output_ttl)) {
// Age floating D/A output.
floating_output_ttl -= delta_t;
if (unlikely(floating_output_ttl <= 0)) {
floating_output_ttl = 0;
waveform_output = 0;
}
}
}
}
// ----------------------------------------------------------------------------
// Waveform output (12 bits).
// ----------------------------------------------------------------------------
// The digital waveform output is converted to an analog signal by a 12-bit
// DAC. Re-vectorized die photographs reveal that the DAC is an R-2R ladder
// built up as follows:
//
// 12V 11 10 9 8 7 6 5 4 3 2 1 0 GND
// Strange | | | | | | | | | | | | | | Missing
// part 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R term.
// (bias) | | | | | | | | | | | | | |
// --R- --R---R---R---R---R---R---R---R---R---R---R-- ---
// | _____
// __|__ __|__ |
// ----- ===== |
// | | | | |
// 12V --- ----- ------- GND
// |
// wout
//
// Bit on: 5V
// Bit off: 0V (GND)
//
// As is the case with all MOS 6581 DACs, the termination to (virtual) ground
// at bit 0 is missing. The MOS 8580 has correct termination, and has also
// done away with the bias part on the left hand side of the figure above.
//
RESID_INLINE
short WaveformGenerator::output()
{
// DAC imperfections are emulated by using waveform_output as an index
// into a DAC lookup table. readOSC() uses waveform_output directly.
return model_dac[sid_model][waveform_output];
}
#endif // RESID_INLINING || defined(RESID_WAVE_CC)
} // namespace reSID
#endif // not RESID_WAVE_H