cog/Frameworks/libsidplay/sidplay-residfp-code/.svn/pristine/dc/dc319bbecc2a46e734a26a5cc56...

120 lines
3.3 KiB
Plaintext

/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2015 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "Spline.h"
#include <cassert>
#include <limits>
namespace reSIDfp
{
Spline::Spline(const Point input[], size_t inputLength) :
params(inputLength),
c(&params[0])
{
assert(inputLength > 2);
const size_t coeffLength = inputLength - 1;
std::vector<double> dxs(coeffLength);
std::vector<double> ms(coeffLength);
// Get consecutive differences and slopes
for (size_t i = 0; i < coeffLength; i++)
{
assert(input[i].x < input[i + 1].x);
const double dx = input[i + 1].x - input[i].x;
const double dy = input[i + 1].y - input[i].y;
dxs[i] = dx;
ms[i] = dy/dx;
}
// Get degree-1 coefficients
params[0].c = ms[0];
for (size_t i = 1; i < coeffLength; i++)
{
const double m = ms[i - 1];
const double mNext = ms[i];
if (m * mNext <= 0)
{
params[i].c = 0.0;
}
else
{
const double dx = dxs[i - 1];
const double dxNext = dxs[i];
const double common = dx + dxNext;
params[i].c = 3.0 * common / ((common + dxNext) / m + (common + dx) / mNext);
}
}
params[coeffLength].c = ms[coeffLength - 1];
// Get degree-2 and degree-3 coefficients
for (size_t i = 0; i < coeffLength; i++)
{
params[i].x1 = input[i].x;
params[i].x2 = input[i + 1].x;
params[i].d = input[i].y;
const double c1 = params[i].c;
const double m = ms[i];
const double invDx = 1.0 / dxs[i];
const double common = c1 + params[i + 1].c - m - m;
params[i].b = (m - c1 - common) * invDx;
params[i].a = common * invDx * invDx;
}
// Fix the upper range, because we interpolate outside original bounds if necessary.
params[coeffLength - 1].x2 = std::numeric_limits<double>::max();
}
Spline::Point Spline::evaluate(double x) const
{
if (x < c->x1 || x > c->x2)
{
for (size_t i = 0; i < params.size(); i++)
{
if (x <= params[i].x2)
{
c = &params[i];
break;
}
}
}
// Interpolate
const double diff = x - c->x1;
Point out;
// y = a*x^3 + b*x^2 + c*x + d
out.x = ((c->a * diff + c->b) * diff + c->c) * diff + c->d;
// dy = 3*a*x^2 + 2*b*x + c
out.y = (3.0 * c->a * diff + 2.0 * c->b) * diff + c->c;
return out;
}
} // namespace reSIDfp