cog/Frameworks/GME/gme/Sms_Apu.cpp

331 lines
6.6 KiB
C++
Executable File

// Sms_Snd_Emu 0.1.4. http://www.slack.net/~ant/
#include "Sms_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
// Sms_Osc
Sms_Osc::Sms_Osc()
{
output = 0;
outputs [0] = 0; // always stays NULL
outputs [1] = 0;
outputs [2] = 0;
outputs [3] = 0;
}
void Sms_Osc::reset()
{
delay = 0;
last_amp = 0;
volume = 0;
output_select = 3;
output = outputs [3];
}
// Sms_Square
inline void Sms_Square::reset()
{
period = 0;
phase = 0;
Sms_Osc::reset();
}
void Sms_Square::run( blip_time_t time, blip_time_t end_time )
{
if ( !volume || period <= 128 )
{
// ignore 16kHz and higher
if ( last_amp )
{
synth->offset( time, -last_amp, output );
last_amp = 0;
}
time += delay;
if ( !period )
{
time = end_time;
}
else if ( time < end_time )
{
// keep calculating phase
int count = (end_time - time + period - 1) / period;
phase = (phase + count) & 1;
time += count * period;
}
}
else
{
int amp = phase ? volume : -volume;
{
int delta = amp - last_amp;
if ( delta )
{
last_amp = amp;
synth->offset( time, delta, output );
}
}
time += delay;
if ( time < end_time )
{
Blip_Buffer* const output = this->output;
int delta = amp * 2;
do
{
delta = -delta;
synth->offset_inline( time, delta, output );
time += period;
phase ^= 1;
}
while ( time < end_time );
this->last_amp = phase ? volume : -volume;
}
}
delay = time - end_time;
}
// Sms_Noise
static int const noise_periods [3] = { 0x100, 0x200, 0x400 };
inline void Sms_Noise::reset()
{
period = &noise_periods [0];
shifter = 0x8000;
feedback = 0x9000;
Sms_Osc::reset();
}
void Sms_Noise::run( blip_time_t time, blip_time_t end_time )
{
int amp = volume;
if ( shifter & 1 )
amp = -amp;
{
int delta = amp - last_amp;
if ( delta )
{
last_amp = amp;
synth.offset( time, delta, output );
}
}
time += delay;
if ( !volume )
time = end_time;
if ( time < end_time )
{
Blip_Buffer* const output = this->output;
unsigned shifter = this->shifter;
int delta = amp * 2;
int period = *this->period * 2;
if ( !period )
period = 16;
do
{
int changed = shifter + 1;
shifter = (feedback & -(shifter & 1)) ^ (shifter >> 1);
if ( changed & 2 ) // true if bits 0 and 1 differ
{
delta = -delta;
synth.offset_inline( time, delta, output );
}
time += period;
}
while ( time < end_time );
this->shifter = shifter;
this->last_amp = delta >> 1;
}
delay = time - end_time;
}
// Sms_Apu
Sms_Apu::Sms_Apu()
{
for ( int i = 0; i < 3; i++ )
{
squares [i].synth = &square_synth;
oscs [i] = &squares [i];
}
oscs [3] = &noise;
volume( 1.0 );
reset();
}
Sms_Apu::~Sms_Apu()
{
}
void Sms_Apu::volume( double vol )
{
vol *= 0.85 / (osc_count * 64 * 2);
square_synth.volume( vol );
noise.synth.volume( vol );
}
void Sms_Apu::treble_eq( const blip_eq_t& eq )
{
square_synth.treble_eq( eq );
noise.synth.treble_eq( eq );
}
void Sms_Apu::osc_output( int index, Blip_Buffer* center, Blip_Buffer* left, Blip_Buffer* right )
{
require( (unsigned) index < osc_count );
require( (center && left && right) || (!center && !left && !right) );
Sms_Osc& osc = *oscs [index];
osc.outputs [1] = right;
osc.outputs [2] = left;
osc.outputs [3] = center;
osc.output = osc.outputs [osc.output_select];
}
void Sms_Apu::output( Blip_Buffer* center, Blip_Buffer* left, Blip_Buffer* right )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, center, left, right );
}
void Sms_Apu::reset( unsigned feedback, int noise_width )
{
last_time = 0;
latch = 0;
if ( !feedback || !noise_width )
{
feedback = 0x0009;
noise_width = 16;
}
// convert to "Galios configuration"
looped_feedback = 1 << (noise_width - 1);
noise_feedback = 0;
while ( noise_width-- )
{
noise_feedback = (noise_feedback << 1) | (feedback & 1);
feedback >>= 1;
}
squares [0].reset();
squares [1].reset();
squares [2].reset();
noise.reset();
}
void Sms_Apu::run_until( blip_time_t end_time )
{
require( end_time >= last_time ); // end_time must not be before previous time
if ( end_time > last_time )
{
// run oscillators
for ( int i = 0; i < osc_count; ++i )
{
Sms_Osc& osc = *oscs [i];
if ( osc.output )
{
osc.output->set_modified();
if ( i < 3 )
squares [i].run( last_time, end_time );
else
noise.run( last_time, end_time );
}
}
last_time = end_time;
}
}
void Sms_Apu::end_frame( blip_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
assert( last_time >= end_time );
last_time -= end_time;
}
void Sms_Apu::write_ggstereo( blip_time_t time, int data )
{
require( (unsigned) data <= 0xFF );
run_until( time );
for ( int i = 0; i < osc_count; i++ )
{
Sms_Osc& osc = *oscs [i];
int flags = data >> i;
Blip_Buffer* old_output = osc.output;
osc.output_select = (flags >> 3 & 2) | (flags & 1);
osc.output = osc.outputs [osc.output_select];
if ( osc.output != old_output && osc.last_amp )
{
if ( old_output )
{
old_output->set_modified();
square_synth.offset( time, -osc.last_amp, old_output );
}
osc.last_amp = 0;
}
}
}
// volumes [i] = 64 * pow( 1.26, 15 - i ) / pow( 1.26, 15 )
static unsigned char const volumes [16] = {
64, 50, 39, 31, 24, 19, 15, 12, 9, 7, 5, 4, 3, 2, 1, 0
};
void Sms_Apu::write_data( blip_time_t time, int data )
{
require( (unsigned) data <= 0xFF );
run_until( time );
if ( data & 0x80 )
latch = data;
int index = (latch >> 5) & 3;
if ( latch & 0x10 )
{
oscs [index]->volume = volumes [data & 15];
}
else if ( index < 3 )
{
Sms_Square& sq = squares [index];
if ( data & 0x80 )
sq.period = (sq.period & 0xFF00) | (data << 4 & 0x00FF);
else
sq.period = (sq.period & 0x00FF) | (data << 8 & 0x3F00);
}
else
{
int select = data & 3;
if ( select < 3 )
noise.period = &noise_periods [select];
else
noise.period = &squares [2].period;
noise.feedback = (data & 0x04) ? noise_feedback : looped_feedback;
noise.shifter = 0x8000;
}
}