cog/Audio/Chain/ConverterNode.m

932 lines
30 KiB
Objective-C

//
// ConverterNode.m
// Cog
//
// Created by Zaphod Beeblebrox on 8/2/05.
// Copyright 2005 __MyCompanyName__. All rights reserved.
//
#import "ConverterNode.h"
#import "Logging.h"
#import <audio/conversion/s16_to_float.h>
#import <audio/conversion/s32_to_float.h>
#import "lpc.h"
void PrintStreamDesc (AudioStreamBasicDescription *inDesc)
{
if (!inDesc) {
DLog (@"Can't print a NULL desc!\n");
return;
}
DLog (@"- - - - - - - - - - - - - - - - - - - -\n");
DLog (@" Sample Rate:%f\n", inDesc->mSampleRate);
DLog (@" Format ID:%s\n", (char*)&inDesc->mFormatID);
DLog (@" Format Flags:%X\n", inDesc->mFormatFlags);
DLog (@" Bytes per Packet:%d\n", inDesc->mBytesPerPacket);
DLog (@" Frames per Packet:%d\n", inDesc->mFramesPerPacket);
DLog (@" Bytes per Frame:%d\n", inDesc->mBytesPerFrame);
DLog (@" Channels per Frame:%d\n", inDesc->mChannelsPerFrame);
DLog (@" Bits per Channel:%d\n", inDesc->mBitsPerChannel);
DLog (@"- - - - - - - - - - - - - - - - - - - -\n");
}
@implementation ConverterNode
- (id)initWithController:(id)c previous:(id)p
{
self = [super initWithController:c previous:p];
if (self)
{
rgInfo = nil;
resampler = NULL;
resampler_data = NULL;
inputBuffer = NULL;
inputBufferSize = 0;
floatBuffer = NULL;
floatBufferSize = 0;
stopping = NO;
convertEntered = NO;
paused = NO;
outputFormatChanged = NO;
skipResampler = NO;
latencyStarted = -1;
latencyEaten = 0;
latencyPostfill = NO;
[[NSUserDefaultsController sharedUserDefaultsController] addObserver:self forKeyPath:@"values.volumeScaling" options:0 context:nil];
[[NSUserDefaultsController sharedUserDefaultsController] addObserver:self forKeyPath:@"values.outputResampling" options:0 context:nil];
}
return self;
}
static const float STEREO_DOWNMIX[8-2][8][2]={
/*3.0*/
{
{0.5858F,0.0F},{0.0F,0.5858F},{0.4142F,0.4142F}
},
/*quadrophonic*/
{
{0.4226F,0.0F},{0.0F,0.4226F},{0.366F,0.2114F},{0.2114F,0.336F}
},
/*5.0*/
{
{0.651F,0.0F},{0.0F,0.651F},{0.46F,0.46F},{0.5636F,0.3254F},
{0.3254F,0.5636F}
},
/*5.1*/
{
{0.529F,0.0F},{0.0F,0.529F},{0.3741F,0.3741F},{0.3741F,0.3741F},{0.4582F,0.2645F},
{0.2645F,0.4582F}
},
/*6.1*/
{
{0.4553F,0.0F},{0.0F,0.4553F},{0.322F,0.322F},{0.322F,0.322F},{0.2788F,0.2788F},
{0.3943F,0.2277F},{0.2277F,0.3943F}
},
/*7.1*/
{
{0.3886F,0.0F},{0.0F,0.3886F},{0.2748F,0.2748F},{0.2748F,0.2748F},{0.3366F,0.1943F},
{0.1943F,0.3366F},{0.3366F,0.1943F},{0.1943F,0.3366F}
}
};
static void downmix_to_stereo(float * buffer, int channels, size_t count)
{
if (channels >= 3 && channels <= 8)
for (size_t i = 0; i < count; ++i)
{
float left = 0, right = 0;
for (int j = 0; j < channels; ++j)
{
left += buffer[i * channels + j] * STEREO_DOWNMIX[channels - 3][j][0];
right += buffer[i * channels + j] * STEREO_DOWNMIX[channels - 3][j][1];
}
buffer[i * 2 + 0] = left;
buffer[i * 2 + 1] = right;
}
}
static void downmix_to_mono(float * buffer, int channels, size_t count)
{
if (channels >= 3 && channels <= 8)
{
downmix_to_stereo(buffer, channels, count);
channels = 2;
}
float invchannels = 1.0 / (float)channels;
for (size_t i = 0; i < count; ++i)
{
float sample = 0;
for (int j = 0; j < channels; ++j)
{
sample += buffer[i * channels + j];
}
buffer[i] = sample * invchannels;
}
}
static void upmix(float * buffer, int inchannels, int outchannels, size_t count)
{
for (ssize_t i = count - 1; i >= 0; --i)
{
if (inchannels == 1 && outchannels == 2)
{
// upmix mono to stereo
float sample = buffer[i];
buffer[i * 2 + 0] = sample;
buffer[i * 2 + 1] = sample;
}
else if (inchannels == 1 && outchannels == 4)
{
// upmix mono to quad
float sample = buffer[i];
buffer[i * 4 + 0] = sample;
buffer[i * 4 + 1] = sample;
buffer[i * 4 + 2] = 0;
buffer[i * 4 + 3] = 0;
}
else if (inchannels == 1 && (outchannels == 3 || outchannels >= 5))
{
// upmix mono to center channel
float sample = buffer[i];
buffer[i * outchannels + 2] = sample;
for (int j = 0; j < 2; ++j)
{
buffer[i * outchannels + j] = 0;
}
for (int j = 3; j < outchannels; ++j)
{
buffer[i * outchannels + j] = 0;
}
}
else if (inchannels == 4 && outchannels >= 5)
{
float fl = buffer[i * 4 + 0];
float fr = buffer[i * 4 + 1];
float bl = buffer[i * 4 + 2];
float br = buffer[i * 4 + 3];
const int skipclfe = (outchannels == 5) ? 1 : 2;
buffer[i * outchannels + 0] = fl;
buffer[i * outchannels + 1] = fr;
buffer[i * outchannels + skipclfe + 2] = bl;
buffer[i * outchannels + skipclfe + 3] = br;
for (int j = 0; j < skipclfe; ++j)
{
buffer[i * outchannels + 2 + j] = 0;
}
for (int j = 4 + skipclfe; j < outchannels; ++j)
{
buffer[i * outchannels + j] = 0;
}
}
else if (inchannels == 5 && outchannels >= 6)
{
float fl = buffer[i * 5 + 0];
float fr = buffer[i * 5 + 1];
float c = buffer[i * 5 + 2];
float bl = buffer[i * 5 + 3];
float br = buffer[i * 5 + 4];
buffer[i * outchannels + 0] = fl;
buffer[i * outchannels + 1] = fr;
buffer[i * outchannels + 2] = c;
buffer[i * outchannels + 3] = 0;
buffer[i * outchannels + 4] = bl;
buffer[i * outchannels + 5] = br;
for (int j = 6; j < outchannels; ++j)
{
buffer[i * outchannels + j] = 0;
}
}
else if (inchannels == 7 && outchannels == 8)
{
float fl = buffer[i * 7 + 0];
float fr = buffer[i * 7 + 1];
float c = buffer[i * 7 + 2];
float lfe = buffer[i * 7 + 3];
float sl = buffer[i * 7 + 4];
float sr = buffer[i * 7 + 5];
float bc = buffer[i * 7 + 6];
buffer[i * 8 + 0] = fl;
buffer[i * 8 + 1] = fr;
buffer[i * 8 + 2] = c;
buffer[i * 8 + 3] = lfe;
buffer[i * 8 + 4] = bc;
buffer[i * 8 + 5] = bc;
buffer[i * 8 + 6] = sl;
buffer[i * 8 + 7] = sr;
}
else
{
// upmix N channels to N channels plus silence the empty channels
float samples[inchannels];
for (int j = 0; j < inchannels; ++j)
{
samples[j] = buffer[i * inchannels + j];
}
for (int j = 0; j < inchannels; ++j)
{
buffer[i * outchannels + j] = samples[j];
}
for (int j = inchannels; j < outchannels; ++j)
{
buffer[i * outchannels + j] = 0;
}
}
}
}
void scale_by_volume(float * buffer, size_t count, float volume)
{
if ( volume != 1.0 )
for (size_t i = 0; i < count; ++i)
buffer[i] *= volume;
}
static void convert_u8_to_s16(int16_t *output, uint8_t *input, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
uint16_t sample = (input[i] << 8) | input[i];
sample ^= 0x8080;
output[i] = (int16_t)(sample);
}
}
static void convert_s8_to_s16(int16_t *output, uint8_t *input, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
uint16_t sample = (input[i] << 8) | input[i];
output[i] = (int16_t)(sample);
}
}
static void convert_u16_to_s16(int16_t *buffer, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
buffer[i] ^= 0x8000;
}
}
static void convert_s24_to_s32(int32_t *output, uint8_t *input, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
int32_t sample = (input[i * 3] << 8) | (input[i * 3 + 1] << 16) | (input[i * 3 + 2] << 24);
output[i] = sample;
}
}
static void convert_u24_to_s32(int32_t *output, uint8_t *input, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
int32_t sample = (input[i * 3] << 8) | (input[i * 3 + 1] << 16) | (input[i * 3 + 2] << 24);
output[i] = sample ^ 0x80000000;
}
}
static void convert_u32_to_s32(int32_t *buffer, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
buffer[i] ^= 0x80000000;
}
}
static void convert_f64_to_f32(float *output, double *input, size_t count)
{
for (size_t i = 0; i < count; ++i)
{
output[i] = (float)(input[i]);
}
}
static void convert_be_to_le(uint8_t *buffer, size_t bitsPerSample, size_t bytes)
{
size_t i;
uint8_t temp;
bitsPerSample = (bitsPerSample + 7) / 8;
switch (bitsPerSample) {
case 2:
for (i = 0; i < bytes; i += 2)
{
temp = buffer[1];
buffer[1] = buffer[0];
buffer[0] = temp;
buffer += 2;
}
break;
case 3:
for (i = 0; i < bytes; i += 3)
{
temp = buffer[2];
buffer[2] = buffer[0];
buffer[0] = temp;
buffer += 3;
}
break;
case 4:
for (i = 0; i < bytes; i += 4)
{
temp = buffer[3];
buffer[3] = buffer[0];
buffer[0] = temp;
temp = buffer[2];
buffer[2] = buffer[1];
buffer[1] = temp;
buffer += 4;
}
break;
case 8:
for (i = 0; i < bytes; i += 8)
{
temp = buffer[7];
buffer[7] = buffer[0];
buffer[0] = temp;
temp = buffer[6];
buffer[6] = buffer[1];
buffer[1] = temp;
temp = buffer[5];
buffer[5] = buffer[2];
buffer[2] = temp;
temp = buffer[4];
buffer[4] = buffer[3];
buffer[3] = temp;
buffer += 8;
}
break;
}
}
static const int extrapolate_order = 16;
static void extrapolate(float *buffer, size_t channels, size_t frameSize, size_t size, BOOL backward)
{
const size_t delta = (backward ? -1 : 1) * channels;
float lpc[extrapolate_order];
float work[frameSize];
for (size_t ch = 0; ch < channels; ch++)
{
if (frameSize - size > extrapolate_order * 2)
{
float *chPcmBuf = buffer + ch + (backward ? frameSize : -1) * channels;
for (size_t i = 0; i < frameSize; i++) work[i] = *(chPcmBuf += delta);
vorbis_lpc_from_data(work, lpc, (int)(frameSize - size), extrapolate_order);
vorbis_lpc_predict(lpc, work + frameSize - size - extrapolate_order, extrapolate_order, work + frameSize - size, size);
chPcmBuf = buffer + ch + (backward ? frameSize : -1) * channels;
for (size_t i = 0; i < frameSize; i++) *(chPcmBuf += delta) = work[i];
}
}
}
-(void)process
{
char writeBuf[CHUNK_SIZE];
// Removed endOfStream check from here, since we want to be able to flush the converter
// when the end of stream is reached. Convert function instead processes what it can,
// and returns 0 samples when it has nothing more to process at the end of stream.
while ([self shouldContinue] == YES)
{
int amountConverted = [self convert:writeBuf amount:CHUNK_SIZE];
if (!amountConverted)
{
if (paused)
{
while (paused)
usleep(500);
continue;
}
else break;
}
[self writeData:writeBuf amount:amountConverted];
}
}
- (int)convert:(void *)dest amount:(int)amount
{
UInt32 ioNumberPackets;
int amountReadFromFC;
int amountRead = 0;
int extrapolateStart = 0;
int extrapolateEnd = 0;
size_t amountToSkip = 0;
BOOL endOfInputStream = NO;
if (stopping)
return 0;
convertEntered = YES;
tryagain:
if (stopping || [self shouldContinue] == NO)
{
convertEntered = NO;
return amountRead;
}
amountReadFromFC = 0;
if (floatOffset == floatSize) // skip this step if there's still float buffered
while (inpOffset == inpSize) {
size_t samplesRead = 0;
// Approximately the most we want on input
ioNumberPackets = (amount - amountRead) / outputFormat.mBytesPerPacket;
size_t newSize = ioNumberPackets * floatFormat.mBytesPerPacket;
if (!inputBuffer || inputBufferSize < newSize)
inputBuffer = realloc( inputBuffer, inputBufferSize = newSize * 3 );
// Pad end of track with floats. For simplicity, pad start in track
// native format.
if (stopping || [self shouldContinue] == NO || [self endOfStream] == YES)
{
if (!skipResampler && !latencyPostfill)
{
ioNumberPackets = (int)resampler->latency(resampler_data);
newSize = ioNumberPackets * floatFormat.mBytesPerPacket;
newSize += inpSize;
if (!inputBuffer || inputBufferSize < newSize)
inputBuffer = realloc( inputBuffer, inputBufferSize = newSize * 3);
extrapolateEnd = ioNumberPackets;
// Extrapolate end samples
if (inpSize)
{
extrapolate( inputBuffer, floatFormat.mChannelsPerFrame, inpSize / floatFormat.mBytesPerPacket, extrapolateEnd, NO);
inpOffset = inpSize;
inpSize += extrapolateEnd * floatFormat.mBytesPerPacket;
}
latencyPostfill = YES;
break;
}
else
{
convertEntered = NO;
return amountRead;
}
}
size_t amountToWrite = ioNumberPackets * inputFormat.mBytesPerPacket;
amountToSkip = 0;
BOOL isFloat = !!(inputFormat.mFormatFlags & kAudioFormatFlagIsFloat);
BOOL isUnsigned = !isFloat && !(inputFormat.mFormatFlags & kAudioFormatFlagIsSignedInteger);
if (!skipResampler)
{
if (latencyStarted < 0)
{
latencyStarted = resampler->latency(resampler_data);
extrapolateStart = (int)latencyStarted;
}
if (latencyStarted)
{
size_t latencyToWrite = latencyStarted * inputFormat.mBytesPerPacket;
if (latencyToWrite > amountToWrite)
latencyToWrite = amountToWrite;
if (isUnsigned)
memset(inputBuffer, 0x80, latencyToWrite);
else
memset(inputBuffer, 0, latencyToWrite);
amountToSkip = latencyToWrite;
amountToWrite -= amountToSkip;
latencyEaten = latencyStarted * sampleRatio;
latencyStarted -= latencyToWrite / inputFormat.mBytesPerPacket;
}
}
size_t bytesReadFromInput = 0;
while (bytesReadFromInput < amountToWrite && !stopping && [self shouldContinue] == YES && [self endOfStream] == NO)
{
size_t bytesRead = [self readData:inputBuffer + amountToSkip + bytesReadFromInput amount:(int)(amountToWrite - bytesReadFromInput)];
bytesReadFromInput += bytesRead;
if (!bytesRead)
usleep(500);
}
bytesReadFromInput += amountToSkip;
if (bytesReadFromInput &&
(inputFormat.mFormatFlags & kAudioFormatFlagIsBigEndian))
{
// Time for endian swap!
convert_be_to_le(inputBuffer, inputFormat.mBitsPerChannel, bytesReadFromInput);
}
if (bytesReadFromInput && isFloat && inputFormat.mBitsPerChannel == 64)
{
// Time for precision loss from weird inputs
samplesRead = bytesReadFromInput / sizeof(double);
convert_f64_to_f32(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead);
memmove(inputBuffer, inputBuffer + bytesReadFromInput, samplesRead * sizeof(float));
bytesReadFromInput = samplesRead * sizeof(float);
}
if (bytesReadFromInput && !isFloat)
{
size_t bitsPerSample = inputFormat.mBitsPerChannel;
if (bitsPerSample <= 8) {
samplesRead = bytesReadFromInput;
if (!isUnsigned)
convert_s8_to_s16(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead);
else
convert_u8_to_s16(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead);
memmove(inputBuffer, inputBuffer + bytesReadFromInput, samplesRead * 2);
bitsPerSample = 16;
bytesReadFromInput = samplesRead * 2;
isUnsigned = NO;
}
if (bitsPerSample <= 16) {
samplesRead = bytesReadFromInput / 2;
if (isUnsigned)
convert_u16_to_s16(inputBuffer, samplesRead);
convert_s16_to_float(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead, 1.0);
memmove(inputBuffer, inputBuffer + bytesReadFromInput, samplesRead * sizeof(float));
bitsPerSample = 32;
bytesReadFromInput = samplesRead * sizeof(float);
isUnsigned = NO;
isFloat = YES;
}
else if (bitsPerSample <= 24) {
samplesRead = bytesReadFromInput / 3;
if (isUnsigned)
convert_u24_to_s32(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead);
else
convert_s24_to_s32(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead);
memmove(inputBuffer, inputBuffer + bytesReadFromInput, samplesRead * 4);
bitsPerSample = 32;
bytesReadFromInput = samplesRead * 4;
isUnsigned = NO;
}
if (!isFloat && bitsPerSample <= 32) {
samplesRead = bytesReadFromInput / 4;
if (isUnsigned)
convert_u32_to_s32(inputBuffer, samplesRead);
convert_s32_to_float(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead, 1.0);
memmove(inputBuffer, inputBuffer + bytesReadFromInput, samplesRead * sizeof(float));
bitsPerSample = 32;
bytesReadFromInput = samplesRead * sizeof(float);
isUnsigned = NO;
isFloat = YES;
}
}
// Extrapolate start
if (extrapolateStart)
{
extrapolate( inputBuffer, floatFormat.mChannelsPerFrame, bytesReadFromInput / floatFormat.mBytesPerPacket, extrapolateStart, YES);
extrapolateStart = 0;
}
// Input now contains bytesReadFromInput worth of floats, in the input sample rate
inpSize = bytesReadFromInput;
inpOffset = 0;
}
if (floatOffset == floatSize)
{
struct resampler_data src_data;
size_t inputSamples = (inpSize - inpOffset) / floatFormat.mBytesPerPacket;
ioNumberPackets = (UInt32)inputSamples;
ioNumberPackets = (UInt32)((float)ioNumberPackets * sampleRatio);
ioNumberPackets = (ioNumberPackets + 255) & ~255;
size_t newSize = ioNumberPackets * floatFormat.mBytesPerPacket;
if (newSize < (ioNumberPackets * dmFloatFormat.mBytesPerPacket))
newSize = ioNumberPackets * dmFloatFormat.mBytesPerPacket;
if (!floatBuffer || floatBufferSize < newSize)
floatBuffer = realloc( floatBuffer, floatBufferSize = newSize * 3 );
if (stopping)
{
convertEntered = NO;
return 0;
}
src_data.data_out = floatBuffer;
src_data.output_frames = 0;
src_data.data_in = (float*)(((uint8_t*)inputBuffer) + inpOffset);
src_data.input_frames = inputSamples;
src_data.ratio = sampleRatio;
if (!skipResampler)
{
resampler->process(resampler_data, &src_data);
}
else
{
memcpy(src_data.data_out, src_data.data_in, inputSamples * floatFormat.mBytesPerPacket);
src_data.output_frames = inputSamples;
}
inpOffset += inputSamples * floatFormat.mBytesPerPacket;
if (!skipResampler && latencyEaten)
{
if (src_data.output_frames > latencyEaten)
{
src_data.output_frames -= latencyEaten;
memmove(src_data.data_out, src_data.data_out + latencyEaten * inputFormat.mChannelsPerFrame, src_data.output_frames * floatFormat.mBytesPerPacket);
latencyEaten = 0;
}
else
{
latencyEaten -= src_data.output_frames;
src_data.output_frames = 0;
}
}
amountReadFromFC = (int)(src_data.output_frames * floatFormat.mBytesPerPacket);
scale_by_volume( (float*) floatBuffer, amountReadFromFC / sizeof(float), volumeScale);
if ( inputFormat.mChannelsPerFrame > 2 && outputFormat.mChannelsPerFrame == 2 )
{
int samples = amountReadFromFC / floatFormat.mBytesPerFrame;
downmix_to_stereo( (float*) floatBuffer, inputFormat.mChannelsPerFrame, samples );
amountReadFromFC = samples * sizeof(float) * 2;
}
else if ( inputFormat.mChannelsPerFrame > 1 && outputFormat.mChannelsPerFrame == 1 )
{
int samples = amountReadFromFC / floatFormat.mBytesPerFrame;
downmix_to_mono( (float*) floatBuffer, inputFormat.mChannelsPerFrame, samples );
amountReadFromFC = samples * sizeof(float);
}
else if ( inputFormat.mChannelsPerFrame < outputFormat.mChannelsPerFrame )
{
int samples = amountReadFromFC / floatFormat.mBytesPerFrame;
upmix( (float*) floatBuffer, inputFormat.mChannelsPerFrame, outputFormat.mChannelsPerFrame, samples );
amountReadFromFC = samples * sizeof(float) * outputFormat.mChannelsPerFrame;
}
floatSize = amountReadFromFC;
floatOffset = 0;
}
if (floatOffset == floatSize)
goto tryagain;
ioNumberPackets = (amount - amountRead);
if (ioNumberPackets > (floatSize - floatOffset))
ioNumberPackets = (UInt32)(floatSize - floatOffset);
memcpy(dest + amountRead, floatBuffer + floatOffset, ioNumberPackets);
floatOffset += ioNumberPackets;
amountRead += ioNumberPackets;
convertEntered = NO;
return amountRead;
}
- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context
{
DLog(@"SOMETHING CHANGED!");
if ([keyPath isEqual:@"values.volumeScaling"]) {
//User reset the volume scaling option
[self refreshVolumeScaling];
}
else if ([keyPath isEqual:@"values.outputResampling"]) {
// Reset resampler
if (resampler && resampler_data)
[self inputFormatDidChange:inputFormat];
}
}
static float db_to_scale(float db)
{
return pow(10.0, db / 20);
}
- (void)refreshVolumeScaling
{
if (rgInfo == nil)
{
volumeScale = 1.0;
return;
}
NSString * scaling = [[NSUserDefaults standardUserDefaults] stringForKey:@"volumeScaling"];
BOOL useAlbum = [scaling hasPrefix:@"albumGain"];
BOOL useTrack = useAlbum || [scaling hasPrefix:@"trackGain"];
BOOL useVolume = useAlbum || useTrack || [scaling isEqualToString:@"volumeScale"];
BOOL usePeak = [scaling hasSuffix:@"WithPeak"];
float scale = 1.0;
float peak = 0.0;
if (useVolume) {
id pVolumeScale = [rgInfo objectForKey:@"volume"];
if (pVolumeScale != nil)
scale = [pVolumeScale floatValue];
}
if (useTrack) {
id trackGain = [rgInfo objectForKey:@"replayGainTrackGain"];
id trackPeak = [rgInfo objectForKey:@"replayGainTrackPeak"];
if (trackGain != nil)
scale = db_to_scale([trackGain floatValue]);
if (trackPeak != nil)
peak = [trackPeak floatValue];
}
if (useAlbum) {
id albumGain = [rgInfo objectForKey:@"replayGainAlbumGain"];
id albumPeak = [rgInfo objectForKey:@"replayGainAlbumPeak"];
if (albumGain != nil)
scale = db_to_scale([albumGain floatValue]);
if (albumPeak != nil)
peak = [albumPeak floatValue];
}
if (usePeak) {
if (scale * peak > 1.0)
scale = 1.0 / peak;
}
volumeScale = scale;
}
- (BOOL)setupWithInputFormat:(AudioStreamBasicDescription)inf outputFormat:(AudioStreamBasicDescription)outf
{
//Make the converter
inputFormat = inf;
outputFormat = outf;
// These are the only sample formats we support translating
BOOL isFloat = !!(inputFormat.mFormatFlags & kAudioFormatFlagIsFloat);
if ((!isFloat && !(inputFormat.mBitsPerChannel >= 1 && inputFormat.mBitsPerChannel <= 32))
|| (isFloat && !(inputFormat.mBitsPerChannel == 32 || inputFormat.mBitsPerChannel == 64)))
return NO;
// These are really placeholders, as we're doing everything internally now
floatFormat = inputFormat;
floatFormat.mFormatFlags = kAudioFormatFlagsNativeFloatPacked;
floatFormat.mBitsPerChannel = 32;
floatFormat.mBytesPerFrame = (32/8)*floatFormat.mChannelsPerFrame;
floatFormat.mBytesPerPacket = floatFormat.mBytesPerFrame * floatFormat.mFramesPerPacket;
inpOffset = 0;
inpSize = 0;
floatOffset = 0;
floatSize = 0;
// This is a post resampler, post-down/upmix format
dmFloatFormat = floatFormat;
dmFloatFormat.mSampleRate = outputFormat.mSampleRate;
dmFloatFormat.mChannelsPerFrame = outputFormat.mChannelsPerFrame;
dmFloatFormat.mBytesPerFrame = (32/8)*dmFloatFormat.mChannelsPerFrame;
dmFloatFormat.mBytesPerPacket = dmFloatFormat.mBytesPerFrame * floatFormat.mFramesPerPacket;
convert_s16_to_float_init_simd();
convert_s32_to_float_init_simd();
skipResampler = outputFormat.mSampleRate == inputFormat.mSampleRate;
sampleRatio = (double)outputFormat.mSampleRate / (double)inputFormat.mSampleRate;
if (!skipResampler)
{
enum resampler_quality quality = RESAMPLER_QUALITY_DONTCARE;
NSString * resampling = [[NSUserDefaults standardUserDefaults] stringForKey:@"outputResampling"];
if ([resampling isEqualToString:@"lowest"])
quality = RESAMPLER_QUALITY_LOWEST;
else if ([resampling isEqualToString:@"lower"])
quality = RESAMPLER_QUALITY_LOWER;
else if ([resampling isEqualToString:@"normal"])
quality = RESAMPLER_QUALITY_NORMAL;
else if ([resampling isEqualToString:@"higher"])
quality = RESAMPLER_QUALITY_HIGHER;
else if ([resampling isEqualToString:@"highest"])
quality = RESAMPLER_QUALITY_HIGHEST;
if (!retro_resampler_realloc(&resampler_data, &resampler, "sinc", quality, inputFormat.mChannelsPerFrame, sampleRatio))
{
return NO;
}
latencyStarted = -1;
latencyEaten = 0;
latencyPostfill = NO;
}
PrintStreamDesc(&inf);
PrintStreamDesc(&outf);
[self refreshVolumeScaling];
// Move this here so process call isn't running the resampler until it's allocated
stopping = NO;
convertEntered = NO;
paused = NO;
outputFormatChanged = NO;
return YES;
}
- (void)dealloc
{
DLog(@"Decoder dealloc");
[[NSUserDefaultsController sharedUserDefaultsController] removeObserver:self forKeyPath:@"values.volumeScaling"];
[[NSUserDefaultsController sharedUserDefaultsController] removeObserver:self forKeyPath:@"values.outputResampling"];
paused = NO;
[self cleanUp];
}
- (void)setOutputFormat:(AudioStreamBasicDescription)format
{
DLog(@"SETTING OUTPUT FORMAT!");
outputFormat = format;
outputFormatChanged = YES;
}
- (void)inputFormatDidChange:(AudioStreamBasicDescription)format
{
DLog(@"FORMAT CHANGED");
paused = YES;
[self cleanUp];
if (outputFormatChanged)
{
[writeLock lock];
[buffer empty];
[writeLock unlock];
}
[self setupWithInputFormat:format outputFormat:outputFormat];
}
- (void)setRGInfo:(NSDictionary *)rgi
{
DLog(@"Setting ReplayGain info");
rgInfo = rgi;
[self refreshVolumeScaling];
}
- (void)cleanUp
{
stopping = YES;
while (convertEntered)
{
usleep(500);
}
if (resampler && resampler_data)
{
resampler->free(resampler, resampler_data);
resampler = NULL;
resampler_data = NULL;
}
if (floatBuffer)
{
free(floatBuffer);
floatBuffer = NULL;
floatBufferSize = 0;
}
if (inputBuffer) {
free(inputBuffer);
inputBuffer = NULL;
inputBufferSize = 0;
}
floatOffset = 0;
floatSize = 0;
}
@end