cog/Libraries/MAC/Files/Source/MACLib/BitArray.cpp

442 lines
17 KiB
C++
Executable File

/************************************************************************************
Includes
************************************************************************************/
#include "All.h"
#include "BitArray.h"
#include "MD5.h"
/************************************************************************************
Declares
************************************************************************************/
#define BIT_ARRAY_ELEMENTS (4096) // the number of elements in the bit array (4 MB)
#define BIT_ARRAY_BYTES (BIT_ARRAY_ELEMENTS * 4) // the number of bytes in the bit array
#define BIT_ARRAY_BITS (BIT_ARRAY_BYTES * 8) // the number of bits in the bit array
#define MAX_ELEMENT_BITS 128
#define REFILL_BIT_THRESHOLD (BIT_ARRAY_BITS - MAX_ELEMENT_BITS)
#define CODE_BITS 32
#define TOP_VALUE ((unsigned int) 1 << (CODE_BITS - 1))
#define SHIFT_BITS (CODE_BITS - 9)
#define EXTRA_BITS ((CODE_BITS - 2) % 8 + 1)
#define BOTTOM_VALUE (TOP_VALUE >> 8)
/************************************************************************************
Lookup tables
************************************************************************************/
const uint32 K_SUM_MIN_BOUNDARY[32] = {0,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,0,0,0,0};
#define MODEL_ELEMENTS 64
#define RANGE_OVERFLOW_TOTAL_WIDTH 65536
#define RANGE_OVERFLOW_SHIFT 16
const uint32 RANGE_TOTAL[64] = {0,19578,36160,48417,56323,60899,63265,64435,64971,65232,65351,65416,65447,65466,65476,65482,65485,65488,65490,65491,65492,65493,65494,65495,65496,65497,65498,65499,65500,65501,65502,65503,65504,65505,65506,65507,65508,65509,65510,65511,65512,65513,65514,65515,65516,65517,65518,65519,65520,65521,65522,65523,65524,65525,65526,65527,65528,65529,65530,65531,65532,65533,65534,65535,};
const uint32 RANGE_WIDTH[64] = {19578,16582,12257,7906,4576,2366,1170,536,261,119,65,31,19,10,6,3,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,};
#ifdef BUILD_RANGE_TABLE
int g_aryOverflows[256] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int g_nTotalOverflow = 0;
#endif
/************************************************************************************
Constructor
************************************************************************************/
CBitArray::CBitArray(CIO *pIO)
{
// allocate memory for the bit array
m_pBitArray = new uint32 [BIT_ARRAY_ELEMENTS];
memset(m_pBitArray, 0, BIT_ARRAY_BYTES);
// initialize other variables
m_nCurrentBitIndex = 0;
m_pIO = pIO;
}
/************************************************************************************
Destructor
************************************************************************************/
CBitArray::~CBitArray()
{
// free the bit array
SAFE_ARRAY_DELETE(m_pBitArray)
#ifdef BUILD_RANGE_TABLE
OutputRangeTable();
#endif
}
/************************************************************************************
Output the bit array via the CIO (typically saves to disk)
************************************************************************************/
int CBitArray::OutputBitArray(BOOL bFinalize)
{
int i;
// write the entire file to disk
unsigned int nBytesWritten = 0;
unsigned int nBytesToWrite = 0;
unsigned int nRetVal = 0;
if (bFinalize)
{
nBytesToWrite = ((m_nCurrentBitIndex >> 5) * 4) + 4;
m_MD5.AddData(m_pBitArray, nBytesToWrite);
for(i=0;i<(nBytesToWrite/4);i++) {
m_pBitArray[i] = swap_endian32(m_pBitArray[i]);
}
RETURN_ON_ERROR(m_pIO->Write(m_pBitArray, nBytesToWrite, &nBytesWritten))
// reset the bit pointer
m_nCurrentBitIndex = 0;
}
else
{
nBytesToWrite = (m_nCurrentBitIndex >> 5) * 4;
m_MD5.AddData(m_pBitArray, nBytesToWrite);
for(i=0;i<(nBytesToWrite/4);i++) {
m_pBitArray[i] = swap_endian32(m_pBitArray[i]);
}
RETURN_ON_ERROR(m_pIO->Write(m_pBitArray, nBytesToWrite, &nBytesWritten))
// move the last value to the front of the bit array
m_pBitArray[0] = m_pBitArray[m_nCurrentBitIndex >> 5];
m_nCurrentBitIndex = (m_nCurrentBitIndex & 31);
// zero the rest of the memory (may not need the +1 because of frame byte alignment)
memset(&m_pBitArray[1], 0, min(nBytesToWrite + 1, BIT_ARRAY_BYTES - 1));
}
// return a success
return ERROR_SUCCESS;
}
/************************************************************************************
Range coding macros -- ugly, but outperform inline's (every cycle counts here)
************************************************************************************/
#define PUTC(VALUE) m_pBitArray[m_nCurrentBitIndex >> 5] |= ((VALUE) & 0xFF) << (24 - (m_nCurrentBitIndex & 31)); m_nCurrentBitIndex += 8;
#define PUTC_NOCAP(VALUE) m_pBitArray[m_nCurrentBitIndex >> 5] |= (VALUE) << (24 - (m_nCurrentBitIndex & 31)); m_nCurrentBitIndex += 8;
#define NORMALIZE_RANGE_CODER \
while (m_RangeCoderInfo.range <= BOTTOM_VALUE) \
{ \
if (m_RangeCoderInfo.low < (0xFF << SHIFT_BITS)) \
{ \
PUTC(m_RangeCoderInfo.buffer); \
for ( ; m_RangeCoderInfo.help; m_RangeCoderInfo.help--) { PUTC_NOCAP(0xFF); } \
m_RangeCoderInfo.buffer = (m_RangeCoderInfo.low >> SHIFT_BITS); \
} \
else if (m_RangeCoderInfo.low & TOP_VALUE) \
{ \
PUTC(m_RangeCoderInfo.buffer + 1); \
m_nCurrentBitIndex += (m_RangeCoderInfo.help * 8); \
m_RangeCoderInfo.help = 0; \
m_RangeCoderInfo.buffer = (m_RangeCoderInfo.low >> SHIFT_BITS); \
} \
else \
{ \
m_RangeCoderInfo.help++; \
} \
\
m_RangeCoderInfo.low = (m_RangeCoderInfo.low << 8) & (TOP_VALUE - 1); \
m_RangeCoderInfo.range <<= 8; \
}
#define ENCODE_FAST(RANGE_WIDTH, RANGE_TOTAL, SHIFT) \
NORMALIZE_RANGE_CODER \
const int nTemp = m_RangeCoderInfo.range >> (SHIFT); \
m_RangeCoderInfo.range = nTemp * (RANGE_WIDTH); \
m_RangeCoderInfo.low += nTemp * (RANGE_TOTAL);
#define ENCODE_DIRECT(VALUE, SHIFT) \
NORMALIZE_RANGE_CODER \
m_RangeCoderInfo.range = m_RangeCoderInfo.range >> (SHIFT); \
m_RangeCoderInfo.low += m_RangeCoderInfo.range * (VALUE);
/************************************************************************************
Directly encode bits to the bitstream
************************************************************************************/
int CBitArray::EncodeBits(unsigned int nValue, int nBits)
{
// make sure there is room for the data
// this is a little slower than ensuring a huge block to start with, but it's safer
if (m_nCurrentBitIndex > REFILL_BIT_THRESHOLD)
{
RETURN_ON_ERROR(OutputBitArray())
}
ENCODE_DIRECT(nValue, nBits);
return 0;
}
/************************************************************************************
Encodes an unsigned int to the bit array (no rice coding)
************************************************************************************/
int CBitArray::EncodeUnsignedLong(unsigned int n)
{
// make sure there are at least 8 bytes in the buffer
if (m_nCurrentBitIndex > (BIT_ARRAY_BYTES - 8))
{
RETURN_ON_ERROR(OutputBitArray())
}
// encode the value
uint32 nBitArrayIndex = m_nCurrentBitIndex >> 5;
int nBitIndex = m_nCurrentBitIndex & 31;
if (nBitIndex == 0)
{
m_pBitArray[nBitArrayIndex] = n;
}
else
{
m_pBitArray[nBitArrayIndex] |= n >> nBitIndex;
m_pBitArray[nBitArrayIndex + 1] = n << (32 - nBitIndex);
}
m_nCurrentBitIndex += 32;
return 0;
}
/************************************************************************************
Advance to a byte boundary (for frame alignment)
************************************************************************************/
void CBitArray::AdvanceToByteBoundary()
{
while (m_nCurrentBitIndex % 8)
m_nCurrentBitIndex++;
}
/************************************************************************************
Encode a value
************************************************************************************/
int CBitArray::EncodeValue(int nEncode, BIT_ARRAY_STATE & BitArrayState)
{
// make sure there is room for the data
// this is a little slower than ensuring a huge block to start with, but it's safer
if (m_nCurrentBitIndex > REFILL_BIT_THRESHOLD)
{
RETURN_ON_ERROR(OutputBitArray())
}
// convert to unsigned
nEncode = (nEncode > 0) ? nEncode * 2 - 1 : -nEncode * 2;
int nOriginalKSum = BitArrayState.nKSum;
// get the working k
int nTempK = (BitArrayState.k) ? BitArrayState.k - 1 : 0;
// update nKSum
BitArrayState.nKSum += ((nEncode + 1) / 2) - ((BitArrayState.nKSum + 16) >> 5);
// update k
if (BitArrayState.nKSum < K_SUM_MIN_BOUNDARY[BitArrayState.k])
BitArrayState.k--;
else if (BitArrayState.nKSum >= K_SUM_MIN_BOUNDARY[BitArrayState.k + 1])
BitArrayState.k++;
// figure the pivot value
int nPivotValue = max(nOriginalKSum / 32, 1);
int nOverflow = nEncode / nPivotValue;
int nBase = nEncode - (nOverflow * nPivotValue);
// store the overflow
if (nOverflow < (MODEL_ELEMENTS - 1))
{
ENCODE_FAST(RANGE_WIDTH[nOverflow], RANGE_TOTAL[nOverflow], RANGE_OVERFLOW_SHIFT);
#ifdef BUILD_RANGE_TABLE
g_aryOverflows[nOverflow]++;
g_nTotalOverflow++;
#endif
}
else
{
// store the "special" overflow (tells that perfect k is encoded next)
ENCODE_FAST(RANGE_WIDTH[MODEL_ELEMENTS - 1], RANGE_TOTAL[MODEL_ELEMENTS - 1], RANGE_OVERFLOW_SHIFT);
#ifdef BUILD_RANGE_TABLE
g_aryOverflows[MODEL_ELEMENTS - 1]++;
g_nTotalOverflow++;
#endif
// code the overflow using straight bits
ENCODE_DIRECT((nOverflow >> 16) & 0xFFFF, 16);
ENCODE_DIRECT(nOverflow & 0xFFFF, 16);
}
// code the base
{
if (nPivotValue >= (1 << 16))
{
int nPivotValueBits = 0;
while ((nPivotValue >> nPivotValueBits) > 0) { nPivotValueBits++; }
int nSplitFactor = 1 << (nPivotValueBits - 16);
// we know that base is smaller than pivot coming into this
// however, after we divide both by an integer, they could be the same
// we account by adding one to the pivot, but this hurts compression
// by (1 / nSplitFactor) -- therefore we maximize the split factor
// that gets one added to it
// encode the pivot as two pieces
int nPivotValueA = (nPivotValue / nSplitFactor) + 1;
int nPivotValueB = nSplitFactor;
int nBaseA = nBase / nSplitFactor;
int nBaseB = nBase % nSplitFactor;
{
NORMALIZE_RANGE_CODER
const int nTemp = m_RangeCoderInfo.range / nPivotValueA;
m_RangeCoderInfo.range = nTemp;
m_RangeCoderInfo.low += nTemp * nBaseA;
}
{
NORMALIZE_RANGE_CODER
const int nTemp = m_RangeCoderInfo.range / nPivotValueB;
m_RangeCoderInfo.range = nTemp;
m_RangeCoderInfo.low += nTemp * nBaseB;
}
}
else
{
NORMALIZE_RANGE_CODER
const int nTemp = m_RangeCoderInfo.range / nPivotValue;
m_RangeCoderInfo.range = nTemp;
m_RangeCoderInfo.low += nTemp * nBase;
}
}
return 0;
}
/************************************************************************************
Flush
************************************************************************************/
void CBitArray::FlushBitArray()
{
// advance to a byte boundary (for alignment)
AdvanceToByteBoundary();
// the range coder
m_RangeCoderInfo.low = 0; // full code range
m_RangeCoderInfo.range = TOP_VALUE;
m_RangeCoderInfo.buffer = 0;
m_RangeCoderInfo.help = 0; // no bytes to follow
}
void CBitArray::FlushState(BIT_ARRAY_STATE & BitArrayState)
{
// k and ksum
BitArrayState.k = 10;
BitArrayState.nKSum = (1 << BitArrayState.k) * 16;
}
/************************************************************************************
Finalize
************************************************************************************/
void CBitArray::Finalize()
{
NORMALIZE_RANGE_CODER
unsigned int nTemp = (m_RangeCoderInfo.low >> SHIFT_BITS) + 1;
if (nTemp > 0xFF) // we have a carry
{
PUTC(m_RangeCoderInfo.buffer + 1);
for ( ; m_RangeCoderInfo.help; m_RangeCoderInfo.help--)
{
PUTC(0);
}
}
else // no carry
{
PUTC(m_RangeCoderInfo.buffer);
for ( ; m_RangeCoderInfo.help; m_RangeCoderInfo.help--)
{
PUTC(((unsigned char) 0xFF));
}
}
// we must output these bytes so the decoder can properly work at the end of the stream
PUTC(nTemp & 0xFF);
PUTC(0);
PUTC(0);
PUTC(0);
}
/************************************************************************************
Build a range table (for development / debugging)
************************************************************************************/
#ifdef BUILD_RANGE_TABLE
void CBitArray::OutputRangeTable()
{
int z;
if (g_nTotalOverflow == 0) return;
int nTotal = 0;
int aryWidth[256]; ZeroMemory(aryWidth, 256 * 4);
for (z = 0; z < MODEL_ELEMENTS; z++)
{
aryWidth[z] = int(((float(g_aryOverflows[z]) * float(65536)) + (g_nTotalOverflow / 2)) / float(g_nTotalOverflow));
if (aryWidth[z] == 0) aryWidth[z] = 1;
nTotal += aryWidth[z];
}
z = 0;
while (nTotal > 65536)
{
if (aryWidth[z] != 1)
{
aryWidth[z]--;
nTotal--;
}
z++;
if (z == MODEL_ELEMENTS) z = 0;
}
z = 0;
while (nTotal < 65536)
{
aryWidth[z++]++;
nTotal++;
if (z == MODEL_ELEMENTS) z = 0;
}
int aryTotal[256]; ZeroMemory(aryTotal, 256 * 4);
for (z = 0; z < MODEL_ELEMENTS; z++)
{
for (int q = 0; q < z; q++)
{
aryTotal[z] += aryWidth[q];
}
}
TCHAR buf[1024];
_stprintf(buf, _T("const uint32 RANGE_TOTAL[%d] = {"), MODEL_ELEMENTS);
ODS(buf);
for (z = 0; z < MODEL_ELEMENTS; z++)
{
_stprintf(buf, _T("%d,"), aryTotal[z]);
OutputDebugString(buf);
}
ODS(_T("};\n"));
_stprintf(buf, _T("const uint32 RANGE_WIDTH[%d] = {"), MODEL_ELEMENTS);
ODS(buf);
for (z = 0; z < MODEL_ELEMENTS; z++)
{
_stprintf(buf, _T("%d,"), aryWidth[z]);
OutputDebugString(buf);
}
ODS(_T("};\n\n"));
}
#endif // #ifdef BUILD_RANGE_TABLE