cog/Frameworks/GME/gme/Effects_Buffer.cpp

600 lines
17 KiB
C++

// Game_Music_Emu https://bitbucket.org/mpyne/game-music-emu/
#include "Effects_Buffer.h"
#include <string.h>
#include <algorithm>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
typedef blargg_long fixed_t;
using std::min;
using std::max;
#define TO_FIXED( f ) fixed_t ((f) * (1L << 15) + 0.5)
#define FMUL( x, y ) (((x) * (y)) >> 15)
const unsigned echo_size = 4096;
const unsigned echo_mask = echo_size - 1;
static_assert( (echo_size & echo_mask) == 0, "echo_size must be a power of 2" );
const unsigned reverb_size = 8192 * 2;
const unsigned reverb_mask = reverb_size - 1;
static_assert( (reverb_size & reverb_mask) == 0, "reverb_size must be a power of 2" );
Effects_Buffer::config_t::config_t()
{
pan_1 = -0.15f;
pan_2 = 0.15f;
reverb_delay = 88.0f;
reverb_level = 0.12f;
echo_delay = 61.0f;
echo_level = 0.10f;
delay_variance = 18.0f;
effects_enabled = false;
}
void Effects_Buffer::set_depth( double d )
{
float f = (float) d;
config_t c;
c.pan_1 = -0.6f * f;
c.pan_2 = 0.6f * f;
c.reverb_delay = 880 * 0.1f;
c.echo_delay = 610 * 0.1f;
if ( f > 0.5 )
f = 0.5; // TODO: more linear reduction of extreme reverb/echo
c.reverb_level = 0.5f * f;
c.echo_level = 0.30f * f;
c.delay_variance = 180 * 0.1f;
c.effects_enabled = (d > 0.0f);
config( c );
}
Effects_Buffer::Effects_Buffer( int num_voices, bool center_only )
: Multi_Buffer( 2*num_voices )
, max_voices(num_voices)
, bufs(max_voices * (center_only ? (max_buf_count - 4) : max_buf_count))
, chan_types(max_voices * chan_types_count)
, stereo_remain(0)
, effect_remain(0)
// TODO: Reorder buf_count to be initialized before bufs to factor out channel sizing
, buf_count(max_voices * (center_only ? (max_buf_count - 4) : max_buf_count))
, effects_enabled(false)
, reverb_buf(max_voices, std::vector<blip_sample_t>(reverb_size))
, echo_buf(max_voices, std::vector<blip_sample_t>(echo_size))
, reverb_pos(max_voices)
, echo_pos(max_voices)
{
set_depth( 0 );
}
Effects_Buffer::~Effects_Buffer()
{}
blargg_err_t Effects_Buffer::set_sample_rate( long rate, int msec )
{
try
{
for(int i=0; i<max_voices; i++)
{
if ( !echo_buf[i].size() )
{
echo_buf[i].resize( echo_size );
}
if ( !reverb_buf[i].size() )
{
reverb_buf[i].resize( reverb_size );
}
}
}
catch(std::bad_alloc& ba)
{
return "Out of memory";
}
for ( int i = 0; i < buf_count; i++ )
RETURN_ERR( bufs [i].set_sample_rate( rate, msec ) );
config( config_ );
clear();
return Multi_Buffer::set_sample_rate( bufs [0].sample_rate(), bufs [0].length() );
}
void Effects_Buffer::clock_rate( long rate )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].clock_rate( rate );
}
void Effects_Buffer::bass_freq( int freq )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].bass_freq( freq );
}
void Effects_Buffer::clear()
{
stereo_remain = 0;
effect_remain = 0;
for(int i=0; i<max_voices; i++)
{
if ( echo_buf[i].size() )
memset( &echo_buf[i][0], 0, echo_size * sizeof echo_buf[i][0] );
if ( reverb_buf[i].size() )
memset( &reverb_buf[i][0], 0, reverb_size * sizeof reverb_buf[i][0] );
}
for ( int i = 0; i < buf_count; i++ )
bufs [i].clear();
}
inline int pin_range( int n, int max, int min = 0 )
{
if ( n < min )
return min;
if ( n > max )
return max;
return n;
}
void Effects_Buffer::config( const config_t& cfg )
{
channels_changed();
// clear echo and reverb buffers
// ensure the echo/reverb buffers have already been allocated, so this method can be
// called before set_sample_rate is called
if ( !config_.effects_enabled && cfg.effects_enabled && echo_buf[0].size() )
{
for(int i=0; i<max_voices; i++)
{
memset( &echo_buf[i][0], 0, echo_size * sizeof echo_buf[i][0] );
memset( &reverb_buf[i][0], 0, reverb_size * sizeof reverb_buf[i][0] );
}
}
config_ = cfg;
if ( config_.effects_enabled )
{
// convert to internal format
chans.pan_1_levels [0] = TO_FIXED( 1 ) - TO_FIXED( config_.pan_1 );
chans.pan_1_levels [1] = TO_FIXED( 2 ) - chans.pan_1_levels [0];
chans.pan_2_levels [0] = TO_FIXED( 1 ) - TO_FIXED( config_.pan_2 );
chans.pan_2_levels [1] = TO_FIXED( 2 ) - chans.pan_2_levels [0];
chans.reverb_level = TO_FIXED( config_.reverb_level );
chans.echo_level = TO_FIXED( config_.echo_level );
int delay_offset = int (1.0 / 2000 * config_.delay_variance * sample_rate());
int reverb_sample_delay = int (1.0 / 1000 * config_.reverb_delay * sample_rate());
chans.reverb_delay_l = pin_range( reverb_size -
(reverb_sample_delay - delay_offset) * 2, reverb_size - 2, 0 );
chans.reverb_delay_r = pin_range( reverb_size + 1 -
(reverb_sample_delay + delay_offset) * 2, reverb_size - 1, 1 );
int echo_sample_delay = int (1.0 / 1000 * config_.echo_delay * sample_rate());
chans.echo_delay_l = pin_range( echo_size - 1 - (echo_sample_delay - delay_offset),
echo_size - 1 );
chans.echo_delay_r = pin_range( echo_size - 1 - (echo_sample_delay + delay_offset),
echo_size - 1 );
for(int i=0; i<max_voices; i++)
{
chan_types [i*chan_types_count+0].center = &bufs [i*max_buf_count+0];
chan_types [i*chan_types_count+0].left = &bufs [i*max_buf_count+3];
chan_types [i*chan_types_count+0].right = &bufs [i*max_buf_count+4];
chan_types [i*chan_types_count+1].center = &bufs [i*max_buf_count+1];
chan_types [i*chan_types_count+1].left = &bufs [i*max_buf_count+3];
chan_types [i*chan_types_count+1].right = &bufs [i*max_buf_count+4];
chan_types [i*chan_types_count+2].center = &bufs [i*max_buf_count+2];
chan_types [i*chan_types_count+2].left = &bufs [i*max_buf_count+5];
chan_types [i*chan_types_count+2].right = &bufs [i*max_buf_count+6];
}
assert( 2 < chan_types_count );
}
else
{
for(int i=0; i<max_voices; i++)
{
// set up outputs
for ( int j = 0; j < chan_types_count; j++ )
{
channel_t& c = chan_types [i*chan_types_count+j];
c.center = &bufs [i*max_buf_count+0];
c.left = &bufs [i*max_buf_count+1];
c.right = &bufs [i*max_buf_count+2];
}
}
}
if ( buf_count < max_buf_count ) // if center_only
{
for(int i=0; i<max_voices; i++)
{
for ( int j = 0; j < chan_types_count; j++ )
{
channel_t& c = chan_types [i*chan_types_count+j];
c.left = c.center;
c.right = c.center;
}
}
}
}
Effects_Buffer::channel_t Effects_Buffer::channel( int i, int type )
{
int out = chan_types_count-1;
if ( !type )
{
out = i % 5;
if ( out > chan_types_count-1 )
out = chan_types_count-1;
}
else if ( !(type & noise_type) && (type & type_index_mask) % 3 != 0 )
{
out = type & 1;
}
return chan_types [(i%max_voices)*chan_types_count+out];
}
void Effects_Buffer::end_frame( blip_time_t clock_count )
{
int bufs_used = 0;
int stereo_mask = (config_.effects_enabled ? 0x78 : 0x06);
const int buf_count_per_voice = buf_count/max_voices;
for ( int v = 0; v < max_voices; v++ ) // foreach voice
{
for ( int i = 0; i < buf_count_per_voice; i++) // foreach buffer of that voice
{
bufs_used |= bufs [v*buf_count_per_voice + i].clear_modified() << i;
bufs [v*buf_count_per_voice + i].end_frame( clock_count );
if ( (bufs_used & stereo_mask) && buf_count == max_voices*max_buf_count )
stereo_remain = max(stereo_remain, bufs [v*buf_count_per_voice + i].samples_avail() + bufs [v*buf_count_per_voice + i].output_latency());
if ( effects_enabled || config_.effects_enabled )
effect_remain = max(effect_remain, bufs [v*buf_count_per_voice + i].samples_avail() + bufs [v*buf_count_per_voice + i].output_latency());
}
bufs_used = 0;
}
effects_enabled = config_.effects_enabled;
}
long Effects_Buffer::samples_avail() const
{
return bufs [0].samples_avail() * 2;
}
long Effects_Buffer::read_samples( blip_sample_t* out, long total_samples )
{
const int n_channels = max_voices * 2;
const int buf_count_per_voice = buf_count/max_voices;
require( total_samples % n_channels == 0 ); // as many items needed to fill at least one frame
long remain = bufs [0].samples_avail();
total_samples = remain = min( remain, total_samples/n_channels );
while ( remain )
{
int active_bufs = buf_count_per_voice;
long count = remain;
// optimizing mixing to skip any channels which had nothing added
if ( effect_remain )
{
if ( count > effect_remain )
count = effect_remain;
if ( stereo_remain )
{
mix_enhanced( out, count );
}
else
{
mix_mono_enhanced( out, count );
active_bufs = 3;
}
}
else if ( stereo_remain )
{
mix_stereo( out, count );
active_bufs = 3;
}
else
{
mix_mono( out, count );
active_bufs = 1;
}
out += count * n_channels;
remain -= count;
stereo_remain -= count;
if ( stereo_remain < 0 )
stereo_remain = 0;
effect_remain -= count;
if ( effect_remain < 0 )
effect_remain = 0;
// skip the output from any buffers that didn't contribute to the sound output
// during this frame (e.g. if we only render mono then only the very first buf
// is 'active')
for ( int v = 0; v < max_voices; v++ ) // foreach voice
{
for ( int i = 0; i < buf_count_per_voice; i++) // foreach buffer of that voice
{
if ( i < active_bufs )
bufs [v*buf_count_per_voice + i].remove_samples( count );
else // keep time synchronized
bufs [v*buf_count_per_voice + i].remove_silence( count );
}
}
}
return total_samples * n_channels;
}
void Effects_Buffer::mix_mono( blip_sample_t* out_, blargg_long count )
{
for(int i=0; i<max_voices; i++)
{
blip_sample_t* BLIP_RESTRICT out = out_;
int const bass = BLIP_READER_BASS( bufs [i*max_buf_count+0] );
BLIP_READER_BEGIN( c, bufs [i*max_buf_count+0] );
// unrolled loop
for ( blargg_long n = count >> 1; n; --n )
{
blargg_long cs0 = BLIP_READER_READ( c );
BLIP_READER_NEXT( c, bass );
blargg_long cs1 = BLIP_READER_READ( c );
BLIP_READER_NEXT( c, bass );
if ( (int16_t) cs0 != cs0 )
cs0 = 0x7FFF - (cs0 >> 24);
((uint32_t*) out) [i*2+0] = ((uint16_t) cs0) | (uint16_t(cs0) << 16);
if ( (int16_t) cs1 != cs1 )
cs1 = 0x7FFF - (cs1 >> 24);
((uint32_t*) out) [i*2+1] = ((uint16_t) cs1) | (uint16_t(cs1) << 16);
out += max_voices*4;
}
if ( count & 1 )
{
int s = BLIP_READER_READ( c );
BLIP_READER_NEXT( c, bass );
out [i*2+0] = s;
out [i*2+1] = s;
if ( (int16_t) s != s )
{
s = 0x7FFF - (s >> 24);
out [i*2+0] = s;
out [i*2+1] = s;
}
}
BLIP_READER_END( c, bufs [i*max_buf_count+0] );
}
}
void Effects_Buffer::mix_stereo( blip_sample_t* out_, blargg_long frames )
{
for(int i=0; i<max_voices; i++)
{
blip_sample_t* BLIP_RESTRICT out = out_;
int const bass = BLIP_READER_BASS( bufs [i*max_buf_count+0] );
BLIP_READER_BEGIN( c, bufs [i*max_buf_count+0] );
BLIP_READER_BEGIN( l, bufs [i*max_buf_count+1] );
BLIP_READER_BEGIN( r, bufs [i*max_buf_count+2] );
int count = frames;
while ( count-- )
{
int cs = BLIP_READER_READ( c );
BLIP_READER_NEXT( c, bass );
int left = cs + BLIP_READER_READ( l );
int right = cs + BLIP_READER_READ( r );
BLIP_READER_NEXT( l, bass );
BLIP_READER_NEXT( r, bass );
if ( (int16_t) left != left )
left = 0x7FFF - (left >> 24);
if ( (int16_t) right != right )
right = 0x7FFF - (right >> 24);
out [i*2+0] = left;
out [i*2+1] = right;
out += max_voices*2;
}
BLIP_READER_END( r, bufs [i*max_buf_count+2] );
BLIP_READER_END( l, bufs [i*max_buf_count+1] );
BLIP_READER_END( c, bufs [i*max_buf_count+0] );
}
}
void Effects_Buffer::mix_mono_enhanced( blip_sample_t* out_, blargg_long frames )
{
for(int i=0; i<max_voices; i++)
{
blip_sample_t* BLIP_RESTRICT out = out_;
int const bass = BLIP_READER_BASS( bufs [i*max_buf_count+2] );
BLIP_READER_BEGIN( center, bufs [i*max_buf_count+2] );
BLIP_READER_BEGIN( sq1, bufs [i*max_buf_count+0] );
BLIP_READER_BEGIN( sq2, bufs [i*max_buf_count+1] );
blip_sample_t* const reverb_buf = &this->reverb_buf[i][0];
blip_sample_t* const echo_buf = &this->echo_buf[i][0];
int echo_pos = this->echo_pos[i];
int reverb_pos = this->reverb_pos[i];
int count = frames;
while ( count-- )
{
int sum1_s = BLIP_READER_READ( sq1 );
int sum2_s = BLIP_READER_READ( sq2 );
BLIP_READER_NEXT( sq1, bass );
BLIP_READER_NEXT( sq2, bass );
int new_reverb_l = FMUL( sum1_s, chans.pan_1_levels [0] ) +
FMUL( sum2_s, chans.pan_2_levels [0] ) +
reverb_buf [(reverb_pos + chans.reverb_delay_l) & reverb_mask];
int new_reverb_r = FMUL( sum1_s, chans.pan_1_levels [1] ) +
FMUL( sum2_s, chans.pan_2_levels [1] ) +
reverb_buf [(reverb_pos + chans.reverb_delay_r) & reverb_mask];
fixed_t reverb_level = chans.reverb_level;
reverb_buf [reverb_pos] = (blip_sample_t) FMUL( new_reverb_l, reverb_level );
reverb_buf [reverb_pos + 1] = (blip_sample_t) FMUL( new_reverb_r, reverb_level );
reverb_pos = (reverb_pos + 2) & reverb_mask;
int sum3_s = BLIP_READER_READ( center );
BLIP_READER_NEXT( center, bass );
int left = new_reverb_l + sum3_s + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_l) & echo_mask] );
int right = new_reverb_r + sum3_s + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_r) & echo_mask] );
echo_buf [echo_pos] = sum3_s;
echo_pos = (echo_pos + 1) & echo_mask;
if ( (int16_t) left != left )
left = 0x7FFF - (left >> 24);
if ( (int16_t) right != right )
right = 0x7FFF - (right >> 24);
out [i*2+0] = left;
out [i*2+1] = right;
out += max_voices*2;
}
this->reverb_pos[i] = reverb_pos;
this->echo_pos[i] = echo_pos;
BLIP_READER_END( sq1, bufs [i*max_buf_count+0] );
BLIP_READER_END( sq2, bufs [i*max_buf_count+1] );
BLIP_READER_END( center, bufs [i*max_buf_count+2] );
}
}
void Effects_Buffer::mix_enhanced( blip_sample_t* out_, blargg_long frames )
{
for(int i=0; i<max_voices; i++)
{
blip_sample_t* BLIP_RESTRICT out = out_;
int const bass = BLIP_READER_BASS( bufs [i*max_buf_count+2] );
BLIP_READER_BEGIN( center, bufs [i*max_buf_count+2] );
BLIP_READER_BEGIN( l1, bufs [i*max_buf_count+3] );
BLIP_READER_BEGIN( r1, bufs [i*max_buf_count+4] );
BLIP_READER_BEGIN( l2, bufs [i*max_buf_count+5] );
BLIP_READER_BEGIN( r2, bufs [i*max_buf_count+6] );
BLIP_READER_BEGIN( sq1, bufs [i*max_buf_count+0] );
BLIP_READER_BEGIN( sq2, bufs [i*max_buf_count+1] );
blip_sample_t* const reverb_buf = &this->reverb_buf[i][0];
blip_sample_t* const echo_buf = &this->echo_buf[i][0];
int echo_pos = this->echo_pos[i];
int reverb_pos = this->reverb_pos[i];
int count = frames;
while ( count-- )
{
int sum1_s = BLIP_READER_READ( sq1 );
int sum2_s = BLIP_READER_READ( sq2 );
BLIP_READER_NEXT( sq1, bass );
BLIP_READER_NEXT( sq2, bass );
int new_reverb_l = FMUL( sum1_s, chans.pan_1_levels [0] ) +
FMUL( sum2_s, chans.pan_2_levels [0] ) + BLIP_READER_READ( l1 ) +
reverb_buf [(reverb_pos + chans.reverb_delay_l) & reverb_mask];
int new_reverb_r = FMUL( sum1_s, chans.pan_1_levels [1] ) +
FMUL( sum2_s, chans.pan_2_levels [1] ) + BLIP_READER_READ( r1 ) +
reverb_buf [(reverb_pos + chans.reverb_delay_r) & reverb_mask];
BLIP_READER_NEXT( l1, bass );
BLIP_READER_NEXT( r1, bass );
fixed_t reverb_level = chans.reverb_level;
reverb_buf [reverb_pos] = (blip_sample_t) FMUL( new_reverb_l, reverb_level );
reverb_buf [reverb_pos + 1] = (blip_sample_t) FMUL( new_reverb_r, reverb_level );
reverb_pos = (reverb_pos + 2) & reverb_mask;
int sum3_s = BLIP_READER_READ( center );
BLIP_READER_NEXT( center, bass );
int left = new_reverb_l + sum3_s + BLIP_READER_READ( l2 ) + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_l) & echo_mask] );
int right = new_reverb_r + sum3_s + BLIP_READER_READ( r2 ) + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_r) & echo_mask] );
BLIP_READER_NEXT( l2, bass );
BLIP_READER_NEXT( r2, bass );
echo_buf [echo_pos] = sum3_s;
echo_pos = (echo_pos + 1) & echo_mask;
if ( (int16_t) left != left )
left = 0x7FFF - (left >> 24);
if ( (int16_t) right != right )
right = 0x7FFF - (right >> 24);
out [i*2+0] = left;
out [i*2+1] = right;
out += max_voices*2;
}
this->reverb_pos[i] = reverb_pos;
this->echo_pos[i] = echo_pos;
BLIP_READER_END( l1, bufs [i*max_buf_count+3] );
BLIP_READER_END( r1, bufs [i*max_buf_count+4] );
BLIP_READER_END( l2, bufs [i*max_buf_count+5] );
BLIP_READER_END( r2, bufs [i*max_buf_count+6] );
BLIP_READER_END( sq1, bufs [i*max_buf_count+0] );
BLIP_READER_END( sq2, bufs [i*max_buf_count+1] );
BLIP_READER_END( center, bufs [i*max_buf_count+2] );
}
}