cog/Frameworks/GME/vgmplay/chips/opl.c

2028 lines
54 KiB
C

// IMPORTANT: This file is not meant to be compiled. It's included in adlibemu_opl?.c.
/*
* Copyright (C) 2002-2010 The DOSBox Team
* OPL2/OPL3 emulation library
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman
* Copyright (C) 1998-2001 Ken Silverman
* Ken Silverman's official web site: "http://www.advsys.net/ken"
*/
#include <math.h>
#include <stdlib.h> // rand()
#include <memory.h> // for memset()
//#include "dosbox.h"
#include "../stdbool.h"
#include "opl.h"
//static fltype recipsamp; // inverse of sampling rate // moved to OPL_DATA
static Bit16s wavtable[WAVEPREC*3]; // wave form table
// vibrato/tremolo tables
static Bit32s vib_table[VIBTAB_SIZE];
static Bit32s trem_table[TREMTAB_SIZE*2];
static Bit32s vibval_const[BLOCKBUF_SIZE];
static Bit32s tremval_const[BLOCKBUF_SIZE];
// vibrato value tables (used per-operator)
static Bit32s vibval_var1[BLOCKBUF_SIZE];
static Bit32s vibval_var2[BLOCKBUF_SIZE];
//static Bit32s vibval_var3[BLOCKBUF_SIZE];
//static Bit32s vibval_var4[BLOCKBUF_SIZE];
// vibrato/trmolo value table pointers
//static Bit32s *vibval1, *vibval2, *vibval3, *vibval4;
//static Bit32s *tremval1, *tremval2, *tremval3, *tremval4;
// moved to adlib_getsample
// key scale level lookup table
static const fltype kslmul[4] = {
0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct
};
// frequency multiplicator lookup table
static const fltype frqmul_tab[16] = {
0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15
};
// calculated frequency multiplication values (depend on sampling rate)
//static fltype frqmul[16]; // moved to OPL_DATA
// key scale levels
static Bit8u kslev[8][16];
// map a channel number to the register offset of the modulator (=register base)
static const Bit8u modulatorbase[9] = {
0,1,2,
8,9,10,
16,17,18
};
// map a register base to a modulator operator number or operator number
#if defined(OPLTYPE_IS_OPL3)
static const Bit8u regbase2modop[44] = {
0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set
18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set
};
static const Bit8u regbase2op[44] = {
0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set
18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set
};
#else
static const Bit8u regbase2modop[22] = {
0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8
};
static const Bit8u regbase2op[22] = {
0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17
};
#endif
// start of the waveform
static Bit32u waveform[8] = {
WAVEPREC,
WAVEPREC>>1,
WAVEPREC,
(WAVEPREC*3)>>2,
0,
0,
(WAVEPREC*5)>>2,
WAVEPREC<<1
};
// length of the waveform as mask
static Bit32u wavemask[8] = {
WAVEPREC-1,
WAVEPREC-1,
(WAVEPREC>>1)-1,
(WAVEPREC>>1)-1,
WAVEPREC-1,
((WAVEPREC*3)>>2)-1,
WAVEPREC>>1,
WAVEPREC-1
};
// where the first entry resides
static Bit32u wavestart[8] = {
0,
WAVEPREC>>1,
0,
WAVEPREC>>2,
0,
0,
0,
WAVEPREC>>3
};
// envelope generator function constants
static fltype attackconst[4] = {
(fltype)(1/2.82624),
(fltype)(1/2.25280),
(fltype)(1/1.88416),
(fltype)(1/1.59744)
};
static fltype decrelconst[4] = {
(fltype)(1/39.28064),
(fltype)(1/31.41608),
(fltype)(1/26.17344),
(fltype)(1/22.44608)
};
INLINE void operator_advance(OPL_DATA* chip, op_type* op_pt, Bit32s vib) {
op_pt->wfpos = op_pt->tcount; // waveform position
// advance waveform time
op_pt->tcount += op_pt->tinc;
op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT;
op_pt->generator_pos += chip->generator_add;
}
INLINE void operator_advance_drums(OPL_DATA* chip, op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3)
{
Bit32u c1 = op_pt1->tcount/FIXEDPT;
Bit32u c3 = op_pt3->tcount/FIXEDPT;
Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00;
Bit32u noisebit = rand()&1;
Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1);
//Hihat
Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1)));
op_pt1->wfpos = inttm*FIXEDPT; // waveform position
// advance waveform time
op_pt1->tcount += op_pt1->tinc;
op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT;
op_pt1->generator_pos += chip->generator_add;
//Snare
inttm = ((1+snare_phase_bit) ^ noisebit)<<8;
op_pt2->wfpos = inttm*FIXEDPT; // waveform position
// advance waveform time
op_pt2->tcount += op_pt2->tinc;
op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT;
op_pt2->generator_pos += chip->generator_add;
//Cymbal
inttm = (1+phasebit)<<8;
op_pt3->wfpos = inttm*FIXEDPT; // waveform position
// advance waveform time
op_pt3->tcount += op_pt3->tinc;
op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT;
op_pt3->generator_pos += chip->generator_add;
}
// output level is sustained, mode changes only when operator is turned off (->release)
// or when the keep-sustained bit is turned off (->sustain_nokeep)
INLINE void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem)
{
if (op_pt->op_state != OF_TYPE_OFF)
{
Bit32u i;
op_pt->lastcval = op_pt->cval;
i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT);
// wform: -16384 to 16383 (0x4000)
// trem : 32768 to 65535 (0x10000)
// step_amp: 0.0 to 1.0
// vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000)
op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0);
}
}
// no action, operator is off
static void operator_off(op_type* op_pt) {
}
// output level is sustained, mode changes only when operator is turned off (->release)
// or when the keep-sustained bit is turned off (->sustain_nokeep)
static void operator_sustain(op_type* op_pt)
{
Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
Bit32u ct;
for (ct=0; ct<num_steps_add; ct++)
{
op_pt->cur_env_step++;
}
op_pt->generator_pos -= num_steps_add*FIXEDPT;
}
// operator in release mode, if output level reaches zero the operator is turned off
static void operator_release(op_type* op_pt)
{
Bit32u num_steps_add;
Bit32u ct;
// ??? boundary?
if (op_pt->amp > 0.00000001)
{
// release phase
op_pt->amp *= op_pt->releasemul;
}
num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
for (ct=0; ct<num_steps_add; ct++)
{
op_pt->cur_env_step++; // sample counter
if ((op_pt->cur_env_step & op_pt->env_step_r)==0)
{
if (op_pt->amp <= 0.00000001)
{
// release phase finished, turn off this operator
op_pt->amp = 0.0;
if (op_pt->op_state == OF_TYPE_REL)
{
op_pt->op_state = OF_TYPE_OFF;
}
}
op_pt->step_amp = op_pt->amp;
}
}
op_pt->generator_pos -= num_steps_add*FIXEDPT;
}
// operator in decay mode, if sustain level is reached the output level is either
// kept (sustain level keep enabled) or the operator is switched into release mode
static void operator_decay(op_type* op_pt)
{
Bit32u num_steps_add;
Bit32u ct;
if (op_pt->amp > op_pt->sustain_level)
{
// decay phase
op_pt->amp *= op_pt->decaymul;
}
num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
for (ct=0; ct<num_steps_add; ct++)
{
op_pt->cur_env_step++;
if ((op_pt->cur_env_step & op_pt->env_step_d)==0)
{
if (op_pt->amp <= op_pt->sustain_level)
{
// decay phase finished, sustain level reached
if (op_pt->sus_keep)
{
// keep sustain level (until turned off)
op_pt->op_state = OF_TYPE_SUS;
op_pt->amp = op_pt->sustain_level;
}
else
{
// next: release phase
op_pt->op_state = OF_TYPE_SUS_NOKEEP;
}
}
op_pt->step_amp = op_pt->amp;
}
}
op_pt->generator_pos -= num_steps_add*FIXEDPT;
}
// operator in attack mode, if full output level is reached,
// the operator is switched into decay mode
static void operator_attack(op_type* op_pt)
{
Bit32u num_steps_add;
Bit32u ct;
op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0;
num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
for (ct=0; ct<num_steps_add; ct++)
{
op_pt->cur_env_step++; // next sample
if ((op_pt->cur_env_step & op_pt->env_step_a)==0)
{ // check if next step already reached
if (op_pt->amp > 1.0)
{
// attack phase finished, next: decay
op_pt->op_state = OF_TYPE_DEC;
op_pt->amp = 1.0;
op_pt->step_amp = 1.0;
}
op_pt->step_skip_pos_a <<= 1;
if (op_pt->step_skip_pos_a==0) op_pt->step_skip_pos_a = 1;
if (op_pt->step_skip_pos_a & op_pt->env_step_skip_a)
{ // check if required to skip next step
op_pt->step_amp = op_pt->amp;
}
}
}
op_pt->generator_pos -= num_steps_add*FIXEDPT;
}
static void operator_eg_attack_check(op_type* op_pt)
{
if (((op_pt->cur_env_step + 1) & op_pt->env_step_a)==0)
{
// check if next step already reached
if (op_pt->a0 >= 1.0)
{
// attack phase finished, next: decay
op_pt->op_state = OF_TYPE_DEC;
op_pt->amp = 1.0;
op_pt->step_amp = 1.0;
}
}
}
typedef void (*optype_fptr)(op_type*);
static optype_fptr opfuncs[6] = {
operator_attack,
operator_decay,
operator_release,
operator_sustain, // sustain phase (keeping level)
operator_release, // sustain_nokeep phase (release-style)
operator_off
};
static void change_attackrate(OPL_DATA* chip, Bitu regbase, op_type* op_pt)
{
Bits attackrate = chip->adlibreg[ARC_ATTR_DECR+regbase]>>4;
if (attackrate)
{
static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa};
Bits step_skip;
Bits steps;
Bits step_num;
fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*chip->recipsamp);
// attack rate coefficients
op_pt->a0 = (fltype)(0.0377*f);
op_pt->a1 = (fltype)(10.73*f+1);
op_pt->a2 = (fltype)(-17.57*f);
op_pt->a3 = (fltype)(7.42*f);
step_skip = attackrate*4 + op_pt->toff;
steps = step_skip >> 2;
op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1;
step_num = (step_skip<=48)?(4-(step_skip&3)):0;
op_pt->env_step_skip_a = step_skip_mask[step_num];
#if defined(OPLTYPE_IS_OPL3)
if (step_skip>=60)
#else
if (step_skip>=62)
#endif
{
op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0
op_pt->a1 = (fltype)(0.0);
op_pt->a2 = (fltype)(0.0);
op_pt->a3 = (fltype)(0.0);
}
}
else
{
// attack disabled
op_pt->a0 = 0.0;
op_pt->a1 = 1.0;
op_pt->a2 = 0.0;
op_pt->a3 = 0.0;
op_pt->env_step_a = 0;
op_pt->env_step_skip_a = 0;
}
}
static void change_decayrate(OPL_DATA* chip, Bitu regbase, op_type* op_pt)
{
Bits decayrate = chip->adlibreg[ARC_ATTR_DECR+regbase]&15;
// decaymul should be 1.0 when decayrate==0
if (decayrate) {
Bits steps;
fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*chip->recipsamp);
op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2)))));
steps = (decayrate*4 + op_pt->toff) >> 2;
op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1;
}
else
{
op_pt->decaymul = 1.0;
op_pt->env_step_d = 0;
}
}
static void change_releaserate(OPL_DATA* chip, Bitu regbase, op_type* op_pt)
{
Bits releaserate = chip->adlibreg[ARC_SUSL_RELR+regbase]&15;
// releasemul should be 1.0 when releaserate==0
if (releaserate)
{
Bits steps;
fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*chip->recipsamp);
op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2)))));
steps = (releaserate*4 + op_pt->toff) >> 2;
op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1;
}
else
{
op_pt->releasemul = 1.0;
op_pt->env_step_r = 0;
}
}
static void change_sustainlevel(OPL_DATA* chip, Bitu regbase, op_type* op_pt)
{
Bits sustainlevel = chip->adlibreg[ARC_SUSL_RELR+regbase]>>4;
// sustainlevel should be 0.0 when sustainlevel==15 (max)
if (sustainlevel<15)
{
op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05)));
}
else
{
op_pt->sustain_level = 0.0;
}
}
static void change_waveform(OPL_DATA* chip, Bitu regbase, op_type* op_pt)
{
#if defined(OPLTYPE_IS_OPL3)
if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22
#endif
// waveform selection
op_pt->cur_wmask = wavemask[chip->wave_sel[regbase]];
op_pt->cur_wform = &wavtable[waveform[chip->wave_sel[regbase]]];
// (might need to be adapted to waveform type here...)
}
static void change_keepsustain(OPL_DATA* chip, Bitu regbase, op_type* op_pt)
{
op_pt->sus_keep = (chip->adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0;
if (op_pt->op_state==OF_TYPE_SUS)
{
if (!op_pt->sus_keep)
op_pt->op_state = OF_TYPE_SUS_NOKEEP;
}
else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP)
{
if (op_pt->sus_keep)
op_pt->op_state = OF_TYPE_SUS;
}
}
// enable/disable vibrato/tremolo LFO effects
static void change_vibrato(OPL_DATA* chip, Bitu regbase, op_type* op_pt)
{
op_pt->vibrato = (chip->adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0;
op_pt->tremolo = (chip->adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0;
}
// change amount of self-feedback
static void change_feedback(OPL_DATA* chip, Bitu chanbase, op_type* op_pt)
{
Bits feedback = chip->adlibreg[ARC_FEEDBACK+chanbase]&14;
if (feedback)
op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8)));
else
op_pt->mfbi = 0;
}
static void change_frequency(OPL_DATA* chip, Bitu chanbase, Bitu regbase, op_type* op_pt)
{
Bit32u frn;
Bit32u oct;
Bit32u note_sel;
fltype vol_in;
// frequency
frn = ((((Bit32u)chip->adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)chip->adlibreg[ARC_FREQ_NUM+chanbase];
// block number/octave
oct = ((((Bit32u)chip->adlibreg[ARC_KON_BNUM+chanbase])>>2)&7);
op_pt->freq_high = (Bit32s)((frn>>7)&7);
// keysplit
note_sel = (chip->adlibreg[8]>>6)&1;
op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)&note_sel);
op_pt->toff += (oct<<1);
// envelope scaling (KSR)
if (!(chip->adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2;
// 20+a0+b0:
op_pt->tinc = (Bit32u)((((fltype)(frn<<oct))*chip->frqmul[chip->adlibreg[ARC_TVS_KSR_MUL+regbase]&15]));
// 40+a0+b0:
vol_in = (fltype)((fltype)(chip->adlibreg[ARC_KSL_OUTLEV+regbase]&63) +
kslmul[chip->adlibreg[ARC_KSL_OUTLEV+regbase]>>6]*kslev[oct][frn>>6]);
op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14)));
// operator frequency changed, care about features that depend on it
change_attackrate(chip, regbase,op_pt);
change_decayrate(chip, regbase,op_pt);
change_releaserate(chip, regbase,op_pt);
}
static void enable_operator(OPL_DATA* chip, Bitu regbase, op_type* op_pt, Bit32u act_type)
{
// check if this is really an off-on transition
if (op_pt->act_state == OP_ACT_OFF)
{
Bits wselbase = regbase;
if (wselbase>=ARC_SECONDSET)
wselbase -= (ARC_SECONDSET-22); // second set starts at 22
op_pt->tcount = wavestart[chip->wave_sel[wselbase]]*FIXEDPT;
// start with attack mode
op_pt->op_state = OF_TYPE_ATT;
op_pt->act_state |= act_type;
}
}
static void disable_operator(op_type* op_pt, Bit32u act_type)
{
// check if this is really an on-off transition
if (op_pt->act_state != OP_ACT_OFF)
{
op_pt->act_state &= (~act_type);
if (op_pt->act_state == OP_ACT_OFF)
{
if (op_pt->op_state != OF_TYPE_OFF)
op_pt->op_state = OF_TYPE_REL;
}
}
}
//void adlib_init(Bit32u samplerate)
void* ADLIBEMU(init)(UINT32 clock, UINT32 samplerate,
ADL_UPDATEHANDLER UpdateHandler, void* param)
{
OPL_DATA* OPL;
//op_type* op;
Bits i, j, oct;
//Bit32s trem_table_int[TREMTAB_SIZE];
static Bitu initfirstime = 0;
OPL = (OPL_DATA*)malloc(sizeof(OPL_DATA));
OPL->chip_clock = clock;
OPL->int_samplerate = samplerate;
OPL->UpdateHandler = UpdateHandler;
OPL->UpdateParam = param;
OPL->generator_add = (Bit32u)(INTFREQU*FIXEDPT/OPL->int_samplerate);
/*memset(OPL->adlibreg,0,sizeof(OPL->adlibreg));
memset(OPL->op,0,sizeof(op_type)*MAXOPERATORS);
memset(OPL->wave_sel,0,sizeof(OPL->wave_sel));
for (i=0;i<MAXOPERATORS;i++)
{
op = &OPL->op[i];
op->op_state = OF_TYPE_OFF;
op->act_state = OP_ACT_OFF;
op->amp = 0.0;
op->step_amp = 0.0;
op->vol = 0.0;
op->tcount = 0;
op->tinc = 0;
op->toff = 0;
op->cur_wmask = wavemask[0];
op->cur_wform = &wavtable[waveform[0]];
op->freq_high = 0;
op->generator_pos = 0;
op->cur_env_step = 0;
op->env_step_a = 0;
op->env_step_d = 0;
op->env_step_r = 0;
op->step_skip_pos_a = 0;
op->env_step_skip_a = 0;
#if defined(OPLTYPE_IS_OPL3)
op->is_4op = false;
op->is_4op_attached = false;
op->left_pan = 1;
op->right_pan = 1;
#endif
}*/
OPL->recipsamp = 1.0 / (fltype)OPL->int_samplerate;
for (i=15;i>=0;i--)
{
OPL->frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*OPL->recipsamp);
}
//OPL->status = 0;
//OPL->opl_index = 0;
if (!initfirstime)
{
// create vibrato table
vib_table[0] = 8;
vib_table[1] = 4;
vib_table[2] = 0;
vib_table[3] = -4;
for (i=4; i<VIBTAB_SIZE; i++) vib_table[i] = vib_table[i-4]*-1;
}
// vibrato at ~6.1 ?? (opl3 docs say 6.1, opl4 docs say 6.0, y8950 docs say 6.4)
OPL->vibtab_add = (Bit32u)(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/OPL->int_samplerate);
OPL->vibtab_pos = 0;
if (!initfirstime)
{
Bit32s trem_table_int[TREMTAB_SIZE];
for (i=0; i<BLOCKBUF_SIZE; i++) vibval_const[i] = 0;
// create tremolo table
for (i=0; i<14; i++) trem_table_int[i] = i-13; // upwards (13 to 26 -> -0.5/6 to 0)
for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6)
for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6)
for (i=0; i<TREMTAB_SIZE; i++)
{
// 0.0 .. -26/26*4.8/6 == [0.0 .. -0.8], 4/53 steps == [1 .. 0.57]
fltype trem_val1=(fltype)(((fltype)trem_table_int[i])*4.8/26.0/6.0); // 4.8db
fltype trem_val2=(fltype)((fltype)((Bit32s)(trem_table_int[i]/4))*1.2/6.0/6.0); // 1.2db (larger stepping)
trem_table[i] = (Bit32s)(pow(FL2,trem_val1)*FIXEDPT);
trem_table[TREMTAB_SIZE+i] = (Bit32s)(pow(FL2,trem_val2)*FIXEDPT);
}
}
// tremolo at 3.7hz
OPL->tremtab_add = (Bit32u)((fltype)TREMTAB_SIZE * TREM_FREQ * FIXEDPT_LFO / (fltype)OPL->int_samplerate);
OPL->tremtab_pos = 0;
if (!initfirstime)
{
initfirstime = 1;
for (i=0; i<BLOCKBUF_SIZE; i++) tremval_const[i] = FIXEDPT;
// create waveform tables
for (i=0;i<(WAVEPREC>>1);i++)
{
wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC));
wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC));
wavtable[i] = wavtable[(i<<1) +WAVEPREC];
// alternative: (zero-less)
/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+1)*PI/WAVEPREC));
wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+3)*PI/WAVEPREC));
wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */
}
for (i=0;i<(WAVEPREC>>3);i++)
{
wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384;
wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384;
}
// key scale level table verified ([table in book]*8/3)
kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37;
kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47;
kslev[7][8] = 48;
for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41);
for (j=6;j>=0;j--)
{
for (i=0;i<16;i++)
{
oct = (Bits)kslev[j+1][i]-8;
if (oct < 0) oct = 0;
kslev[j][i] = (Bit8u)oct;
}
}
}
return OPL;
}
void ADLIBEMU(stop)(void *chip)
{
free(chip);
return;
}
void ADLIBEMU(reset)(void *chip)
{
OPL_DATA* OPL = (OPL_DATA*)chip;
Bits i;
op_type* op;
memset(OPL->adlibreg, 0x00, sizeof(OPL->adlibreg));
memset(OPL->op, 0x00, sizeof(op_type) * MAXOPERATORS);
memset(OPL->wave_sel, 0x00, sizeof(OPL->wave_sel));
for (i=0;i<MAXOPERATORS;i++)
{
op = &OPL->op[i];
op->op_state = OF_TYPE_OFF;
op->act_state = OP_ACT_OFF;
op->amp = 0.0;
op->step_amp = 0.0;
op->vol = 0.0;
op->tcount = 0;
op->tinc = 0;
op->toff = 0;
op->cur_wmask = wavemask[0];
op->cur_wform = &wavtable[waveform[0]];
op->freq_high = 0;
op->generator_pos = 0;
op->cur_env_step = 0;
op->env_step_a = 0;
op->env_step_d = 0;
op->env_step_r = 0;
op->step_skip_pos_a = 0;
op->env_step_skip_a = 0;
#if defined(OPLTYPE_IS_OPL3)
op->is_4op = false;
op->is_4op_attached = false;
op->left_pan = 1;
op->right_pan = 1;
#endif
}
OPL->status = 0;
OPL->opl_index = 0;
OPL->opl_addr = 0;
return;
}
void ADLIBEMU(writeIO)(void *chip, UINT32 addr, UINT8 val)
{
OPL_DATA* OPL = (OPL_DATA*)chip;
if (addr & 1)
adlib_write(OPL, OPL->opl_addr, val);
else
#if defined(OPLTYPE_IS_OPL3)
OPL->opl_addr = val | ((addr & 2) << 7);
#else
OPL->opl_addr = val;
#endif
}
static void adlib_write(void *chip, Bitu idx, Bit8u val)
{
OPL_DATA* OPL = (OPL_DATA*)chip;
Bit32u second_set = idx&0x100;
OPL->adlibreg[idx] = val;
switch (idx&0xf0)
{
case ARC_CONTROL:
// here we check for the second set registers, too:
switch (idx)
{
case 0x02: // timer1 counter
case 0x03: // timer2 counter
break;
case 0x04:
// IRQ reset, timer mask/start
if (val&0x80)
{
// clear IRQ bits in status register
OPL->status &= ~0x60;
}
else
{
OPL->status = 0;
}
break;
#if defined(OPLTYPE_IS_OPL3)
case 0x04|ARC_SECONDSET:
// 4op enable/disable switches for each possible channel
OPL->op[0].is_4op = (val&1)>0;
OPL->op[3].is_4op_attached = OPL->op[0].is_4op;
OPL->op[1].is_4op = (val&2)>0;
OPL->op[4].is_4op_attached = OPL->op[1].is_4op;
OPL->op[2].is_4op = (val&4)>0;
OPL->op[5].is_4op_attached = OPL->op[2].is_4op;
OPL->op[18].is_4op = (val&8)>0;
OPL->op[21].is_4op_attached = OPL->op[18].is_4op;
OPL->op[19].is_4op = (val&16)>0;
OPL->op[22].is_4op_attached = OPL->op[19].is_4op;
OPL->op[20].is_4op = (val&32)>0;
OPL->op[23].is_4op_attached = OPL->op[20].is_4op;
break;
case 0x05|ARC_SECONDSET:
break;
#endif
case 0x08:
// CSW, note select
break;
default:
break;
}
break;
case ARC_TVS_KSR_MUL:
case ARC_TVS_KSR_MUL+0x10:
{
// tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication
int num = idx&7;
Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff;
if ((num<6) && (base<22)) {
Bitu modop = regbase2modop[second_set?(base+22):base];
Bitu regbase = base+second_set;
Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
// change tremolo/vibrato and sustain keeping of this operator
op_type* op_ptr = &OPL->op[modop+((num<3) ? 0 : 9)];
change_keepsustain(chip, regbase,op_ptr);
change_vibrato(chip, regbase,op_ptr);
// change frequency calculations of this operator as
// key scale rate and frequency multiplicator can be changed
#if defined(OPLTYPE_IS_OPL3)
if ((OPL->adlibreg[0x105]&1) && (OPL->op[modop].is_4op_attached))
{
// operator uses frequency of channel
change_frequency(chip, chanbase-3,regbase,op_ptr);
}
else
{
change_frequency(chip, chanbase,regbase,op_ptr);
}
#else
change_frequency(chip, chanbase,base,op_ptr);
#endif
}
}
break;
case ARC_KSL_OUTLEV:
case ARC_KSL_OUTLEV+0x10:
{
// key scale level; output rate
int num = idx&7;
Bitu base = (idx-ARC_KSL_OUTLEV)&0xff;
if ((num<6) && (base<22))
{
Bitu modop = regbase2modop[second_set?(base+22):base];
Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
// change frequency calculations of this operator as
// key scale level and output rate can be changed
op_type* op_ptr = &OPL->op[modop+((num<3) ? 0 : 9)];
#if defined(OPLTYPE_IS_OPL3)
Bitu regbase = base+second_set;
if ((OPL->adlibreg[0x105]&1) && (OPL->op[modop].is_4op_attached))
{
// operator uses frequency of channel
change_frequency(chip, chanbase-3,regbase,op_ptr);
}
else
{
change_frequency(chip, chanbase,regbase,op_ptr);
}
#else
change_frequency(chip, chanbase,base,op_ptr);
#endif
}
}
break;
case ARC_ATTR_DECR:
case ARC_ATTR_DECR+0x10:
{
// attack/decay rates
int num = idx&7;
Bitu base = (idx-ARC_ATTR_DECR)&0xff;
if ((num<6) && (base<22))
{
Bitu regbase = base+second_set;
// change attack rate and decay rate of this operator
op_type* op_ptr = &OPL->op[regbase2op[second_set?(base+22):base]];
change_attackrate(chip, regbase,op_ptr);
change_decayrate(chip, regbase,op_ptr);
}
}
break;
case ARC_SUSL_RELR:
case ARC_SUSL_RELR+0x10:
{
// sustain level; release rate
int num = idx&7;
Bitu base = (idx-ARC_SUSL_RELR)&0xff;
if ((num<6) && (base<22))
{
Bitu regbase = base+second_set;
// change sustain level and release rate of this operator
op_type* op_ptr = &OPL->op[regbase2op[second_set?(base+22):base]];
change_releaserate(chip, regbase,op_ptr);
change_sustainlevel(chip, regbase,op_ptr);
}
}
break;
case ARC_FREQ_NUM:
{
// 0xa0-0xa8 low8 frequency
Bitu base = (idx-ARC_FREQ_NUM)&0xff;
if (base<9)
{
Bits opbase = second_set?(base+18):base;
Bits modbase;
Bitu chanbase;
#if defined(OPLTYPE_IS_OPL3)
if ((OPL->adlibreg[0x105]&1) && OPL->op[opbase].is_4op_attached) break;
#endif
// regbase of modulator:
modbase = modulatorbase[base]+second_set;
chanbase = base+second_set;
change_frequency(chip, chanbase,modbase,&OPL->op[opbase]);
change_frequency(chip, chanbase,modbase+3,&OPL->op[opbase+9]);
#if defined(OPLTYPE_IS_OPL3)
// for 4op channels all four operators are modified to the frequency of the channel
if ((OPL->adlibreg[0x105]&1) && OPL->op[second_set?(base+18):base].is_4op)
{
change_frequency(chip, chanbase,modbase+8,&OPL->op[opbase+3]);
change_frequency(chip, chanbase,modbase+3+8,&OPL->op[opbase+3+9]);
}
#endif
}
}
break;
case ARC_KON_BNUM:
{
Bitu base;
if (OPL->UpdateHandler != NULL) // hack for DOSBox logs
OPL->UpdateHandler(OPL->UpdateParam);
if (idx == ARC_PERC_MODE)
{
#if defined(OPLTYPE_IS_OPL3)
if (second_set) return;
#endif
if ((val&0x30) == 0x30)
{ // BassDrum active
enable_operator(chip, 16,&OPL->op[6],OP_ACT_PERC);
change_frequency(chip, 6,16,&OPL->op[6]);
enable_operator(chip, 16+3,&OPL->op[6+9],OP_ACT_PERC);
change_frequency(chip, 6,16+3,&OPL->op[6+9]);
}
else
{
disable_operator(&OPL->op[6],OP_ACT_PERC);
disable_operator(&OPL->op[6+9],OP_ACT_PERC);
}
if ((val&0x28) == 0x28)
{ // Snare active
enable_operator(chip, 17+3,&OPL->op[16],OP_ACT_PERC);
change_frequency(chip, 7,17+3,&OPL->op[16]);
}
else
{
disable_operator(&OPL->op[16],OP_ACT_PERC);
}
if ((val&0x24) == 0x24)
{ // TomTom active
enable_operator(chip, 18,&OPL->op[8],OP_ACT_PERC);
change_frequency(chip, 8,18,&OPL->op[8]);
}
else
{
disable_operator(&OPL->op[8],OP_ACT_PERC);
}
if ((val&0x22) == 0x22)
{ // Cymbal active
enable_operator(chip, 18+3,&OPL->op[8+9],OP_ACT_PERC);
change_frequency(chip, 8,18+3,&OPL->op[8+9]);
}
else
{
disable_operator(&OPL->op[8+9],OP_ACT_PERC);
}
if ((val&0x21) == 0x21)
{ // Hihat active
enable_operator(chip, 17,&OPL->op[7],OP_ACT_PERC);
change_frequency(chip, 7,17,&OPL->op[7]);
}
else
{
disable_operator(&OPL->op[7],OP_ACT_PERC);
}
break;
}
// regular 0xb0-0xb8
base = (idx-ARC_KON_BNUM)&0xff;
if (base<9)
{
Bits opbase = second_set?(base+18):base;
// regbase of modulator:
Bits modbase = modulatorbase[base]+second_set;
Bitu chanbase;
#if defined(OPLTYPE_IS_OPL3)
if ((OPL->adlibreg[0x105]&1) && OPL->op[opbase].is_4op_attached) break;
#endif
if (val&32)
{
// operator switched on
enable_operator(chip, modbase,&OPL->op[opbase],OP_ACT_NORMAL); // modulator (if 2op)
enable_operator(chip, modbase+3,&OPL->op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op)
#if defined(OPLTYPE_IS_OPL3)
// for 4op channels all four operators are switched on
if ((OPL->adlibreg[0x105]&1) && OPL->op[opbase].is_4op)
{
// turn on chan+3 operators as well
enable_operator(chip, modbase+8,&OPL->op[opbase+3],OP_ACT_NORMAL);
enable_operator(chip, modbase+3+8,&OPL->op[opbase+3+9],OP_ACT_NORMAL);
}
#endif
}
else
{
// operator switched off
disable_operator(&OPL->op[opbase],OP_ACT_NORMAL);
disable_operator(&OPL->op[opbase+9],OP_ACT_NORMAL);
#if defined(OPLTYPE_IS_OPL3)
// for 4op channels all four operators are switched off
if ((OPL->adlibreg[0x105]&1) && OPL->op[opbase].is_4op)
{
// turn off chan+3 operators as well
disable_operator(&OPL->op[opbase+3],OP_ACT_NORMAL);
disable_operator(&OPL->op[opbase+3+9],OP_ACT_NORMAL);
}
#endif
}
chanbase = base+second_set;
// change frequency calculations of modulator and carrier (2op) as
// the frequency of the channel has changed
change_frequency(chip, chanbase,modbase,&OPL->op[opbase]);
change_frequency(chip, chanbase,modbase+3,&OPL->op[opbase+9]);
#if defined(OPLTYPE_IS_OPL3)
// for 4op channels all four operators are modified to the frequency of the channel
if ((OPL->adlibreg[0x105]&1) && OPL->op[second_set?(base+18):base].is_4op)
{
// change frequency calculations of chan+3 operators as well
change_frequency(chip, chanbase,modbase+8,&OPL->op[opbase+3]);
change_frequency(chip, chanbase,modbase+3+8,&OPL->op[opbase+3+9]);
}
#endif
}
}
break;
case ARC_FEEDBACK:
{
// 0xc0-0xc8 feedback/modulation type (AM/FM)
Bitu base = (idx-ARC_FEEDBACK)&0xff;
if (base<9)
{
Bits opbase = second_set?(base+18):base;
Bitu chanbase = base+second_set;
change_feedback(chip, chanbase,&OPL->op[opbase]);
#if defined(OPLTYPE_IS_OPL3)
// OPL3 panning
OPL->op[opbase].left_pan = ((val&0x10)>>4);
OPL->op[opbase].right_pan = ((val&0x20)>>5);
OPL->op[opbase].left_pan += ((val&0x40)>>6);
OPL->op[opbase].right_pan += ((val&0x80)>>7);
#endif
}
}
break;
case ARC_WAVE_SEL:
case ARC_WAVE_SEL+0x10:
{
int num = idx&7;
Bitu base = (idx-ARC_WAVE_SEL)&0xff;
if ((num<6) && (base<22))
{
#if defined(OPLTYPE_IS_OPL3)
Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[]
op_type* op_ptr;
// change waveform
if (OPL->adlibreg[0x105]&1) OPL->wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible
else OPL->wave_sel[wselbase] = val&3;
op_ptr = &OPL->op[regbase2modop[wselbase]+((num<3) ? 0 : 9)];
change_waveform(chip, wselbase,op_ptr);
#else
if (OPL->adlibreg[0x01]&0x20)
{
op_type* op_ptr;
// wave selection enabled, change waveform
OPL->wave_sel[base] = val&3;
op_ptr = &OPL->op[regbase2modop[base]+((num<3) ? 0 : 9)];
change_waveform(chip, base,op_ptr);
}
#endif
}
}
break;
default:
break;
}
}
UINT32 ADLIBEMU(reg_read)(void *chip, UINT32 port)
{
OPL_DATA* OPL = (OPL_DATA*)chip;
#if defined(OPLTYPE_IS_OPL3)
// opl3-detection routines require ret&6 to be zero
if ((port&1)==0)
{
return OPL->status;
}
return 0x00;
#else
// opl2-detection routines require ret&6 to be 6
if ((port&1)==0)
{
return OPL->status|6;
}
return 0xff;
#endif
}
void ADLIBEMU(write_index)(void *chip, UINT32 port, UINT8 val)
{
OPL_DATA* OPL = (OPL_DATA*)chip;
OPL->opl_index = val;
#if defined(OPLTYPE_IS_OPL3)
if ((port&3)!=0)
{
// possibly second set
if (((OPL->adlibreg[0x105]&1)!=0) || (OPL->opl_index==5)) OPL->opl_index |= ARC_SECONDSET;
}
#endif
}
/*static void OPL_INLINE clipit16(Bit32s ival, Bit16s* outval)
{
if (ival<32768)
{
if (ival>-32769)
{
*outval=(Bit16s)ival;
}
else
{
*outval = -32768;
}
}
else
{
*outval = 32767;
}
}*/
// be careful with this
// uses cptr and chanval, outputs into outbufl(/outbufr)
// for opl3 check if opl3-mode is enabled (which uses stereo panning)
//
// Changes by Valley Bell:
// - Changed to always output to both channels
// - added parameter "chn" to fix panning for 4-op channels and the Rhythm Cymbal
#undef CHANVAL_OUT
#if defined(OPLTYPE_IS_OPL3)
#define CHANVAL_OUT(chn) \
if (OPL->adlibreg[0x105]&1) { \
outbufl[i] += chanval*cptr[chn].left_pan; \
outbufr[i] += chanval*cptr[chn].right_pan; \
} else { \
outbufl[i] += chanval; \
outbufr[i] += chanval; \
}
#else
#define CHANVAL_OUT(chn) \
outbufl[i] += chanval; \
outbufr[i] += chanval;
#endif
//void adlib_getsample(Bit16s* sndptr, Bits numsamples)
void ADLIBEMU(getsample)(void *chip, INT32** sndptr, INT32 numsamples)
{
OPL_DATA* OPL = (OPL_DATA*)chip;
Bits i, endsamples;
op_type* cptr;
//Bit32s outbufl[BLOCKBUF_SIZE];
#if defined(OPLTYPE_IS_OPL3)
// second output buffer (right channel for opl3 stereo)
//Bit32s outbufr[BLOCKBUF_SIZE];
#endif
Bit32s* outbufl = sndptr[0];
Bit32s* outbufr = sndptr[1];
// vibrato/tremolo lookup tables (global, to possibly be used by all operators)
Bit32s vib_lut[BLOCKBUF_SIZE];
Bit32s trem_lut[BLOCKBUF_SIZE];
Bits samples_to_process = numsamples;
Bits cursmp;
Bit32s vib_tshift;
Bitu max_channel = NUM_CHANNELS;
Bits cur_ch;
Bit32s *vibval1, *vibval2, *vibval3, *vibval4;
Bit32s *tremval1, *tremval2, *tremval3, *tremval4;
#if defined(OPLTYPE_IS_OPL3)
if ((OPL->adlibreg[0x105]&1)==0) max_channel = NUM_CHANNELS/2;
#endif
if (! samples_to_process)
{
for (cur_ch = 0; cur_ch < max_channel; cur_ch ++)
{
if ((OPL->adlibreg[ARC_PERC_MODE] & 0x20) && (cur_ch >= 6 && cur_ch < 9))
continue;
#if defined(OPLTYPE_IS_OPL3)
if (cur_ch < 9)
cptr = &OPL->op[cur_ch];
else
cptr = &OPL->op[cur_ch+9]; // second set is operator18-operator35
if (cptr->is_4op_attached)
continue;
#else
cptr = &OPL->op[cur_ch];
#endif
if (cptr[0].op_state == OF_TYPE_ATT)
operator_eg_attack_check(&cptr[0]);
if (cptr[9].op_state == OF_TYPE_ATT)
operator_eg_attack_check(&cptr[9]);
}
return;
}
for (cursmp=0; cursmp<samples_to_process; cursmp+=endsamples)
{
endsamples = samples_to_process-cursmp;
//if (endsamples>BLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE;
memset(outbufl,0,endsamples*sizeof(Bit32s));
//#if defined(OPLTYPE_IS_OPL3)
// // clear second output buffer (opl3 stereo)
// //if (adlibreg[0x105]&1)
memset(outbufr,0,endsamples*sizeof(Bit32s));
//#endif
// calculate vibrato/tremolo lookup tables
vib_tshift = ((OPL->adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching
for (i=0;i<endsamples;i++)
{
// cycle through vibrato table
OPL->vibtab_pos += OPL->vibtab_add;
if (OPL->vibtab_pos/FIXEDPT_LFO>=VIBTAB_SIZE)
OPL->vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO;
vib_lut[i] = vib_table[OPL->vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents
// cycle through tremolo table
OPL->tremtab_pos += OPL->tremtab_add;
if (OPL->tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE)
OPL->tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO;
if (OPL->adlibreg[ARC_PERC_MODE]&0x80)
trem_lut[i] = trem_table[OPL->tremtab_pos/FIXEDPT_LFO];
else
trem_lut[i] = trem_table[TREMTAB_SIZE+OPL->tremtab_pos/FIXEDPT_LFO];
}
if (OPL->adlibreg[ARC_PERC_MODE]&0x20)
{
if (! (OPL->MuteChn[NUM_CHANNELS + 0]))
{
//BassDrum
cptr = &OPL->op[6];
if (OPL->adlibreg[ARC_FEEDBACK+6]&1)
{
// additive synthesis
if (cptr[9].op_state != OF_TYPE_OFF)
{
if (cptr[9].vibrato)
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if (cptr[9].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[9],vibval1[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],0,tremval1[i]);
chanval = cptr[9].cval*2;
CHANVAL_OUT(0)
}
}
}
else
{
// frequency modulation
if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[0].op_state != OF_TYPE_OFF))
{
if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF))
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF))
{
vibval2 = vibval_var2;
for (i=0;i<endsamples;i++)
vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval2 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[9].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[0],vibval1[i]);
opfuncs[cptr[0].op_state](&cptr[0]);
operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
operator_advance(OPL, &cptr[9],vibval2[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
chanval = cptr[9].cval*2;
CHANVAL_OUT(0)
}
}
}
} // end if (! Muted)
//TomTom (j=8)
if (! (OPL->MuteChn[NUM_CHANNELS + 2]) && OPL->op[8].op_state != OF_TYPE_OFF)
{
cptr = &OPL->op[8];
if (cptr[0].vibrato)
{
vibval3 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval3[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval3 = vibval_const;
if (cptr[0].tremolo)
tremval3 = trem_lut; // tremolo enabled, use table
else
tremval3 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[0],vibval3[i]);
opfuncs[cptr[0].op_state](&cptr[0]); //TomTom
operator_output(&cptr[0],0,tremval3[i]);
chanval = cptr[0].cval*2;
CHANVAL_OUT(0)
}
}
//Snare/Hihat (j=7), Cymbal (j=8)
if ((OPL->op[7].op_state != OF_TYPE_OFF) || (OPL->op[16].op_state != OF_TYPE_OFF) ||
(OPL->op[17].op_state != OF_TYPE_OFF))
{
cptr = &OPL->op[7];
if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF))
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF))
{
vibval2 = vibval_var2;
for (i=0;i<endsamples;i++)
vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval2 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[9].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
cptr = &OPL->op[8];
if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF))
{
vibval4 = vibval_var2;
for (i=0;i<endsamples;i++)
vibval4[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval4 = vibval_const;
if (cptr[9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table
else tremval4 = tremval_const;
// calculate channel output
cptr = &OPL->op[0]; // set cptr to something useful (else it stays at op[8])
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance_drums(OPL, &OPL->op[7],vibval1[i],&OPL->op[7+9],vibval2[i],&OPL->op[8+9],vibval4[i]);
if (! (OPL->MuteChn[NUM_CHANNELS + 4]))
{
opfuncs[OPL->op[7].op_state](&OPL->op[7]); //Hihat
operator_output(&OPL->op[7],0,tremval1[i]);
}
else
OPL->op[7].cval = 0;
if (! (OPL->MuteChn[NUM_CHANNELS + 1]))
{
opfuncs[OPL->op[7+9].op_state](&OPL->op[7+9]); //Snare
operator_output(&OPL->op[7+9],0,tremval2[i]);
}
else
OPL->op[7+9].cval = 0;
if (! (OPL->MuteChn[NUM_CHANNELS + 3]))
{
opfuncs[OPL->op[8+9].op_state](&OPL->op[8+9]); //Cymbal
operator_output(&OPL->op[8+9],0,tremval4[i]);
}
else
OPL->op[8+9].cval = 0;
//chanval = (OPL->op[7].cval + OPL->op[7+9].cval + OPL->op[8+9].cval)*2;
//CHANVAL_OUT(0)
// fix panning of the snare -Valley Bell
chanval = (OPL->op[7].cval + OPL->op[7+9].cval)*2;
CHANVAL_OUT(7)
chanval = OPL->op[8+9].cval*2;
CHANVAL_OUT(8)
}
}
}
for (cur_ch=max_channel-1; cur_ch>=0; cur_ch--)
{
Bitu k;
if (OPL->MuteChn[cur_ch])
continue;
// skip drum/percussion operators
if ((OPL->adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue;
k = cur_ch;
#if defined(OPLTYPE_IS_OPL3)
if (cur_ch < 9)
{
cptr = &OPL->op[cur_ch];
}
else
{
cptr = &OPL->op[cur_ch+9]; // second set is operator18-operator35
k += (-9+256); // second set uses registers 0x100 onwards
}
// check if this operator is part of a 4-op
//if ((OPL->adlibreg[0x105]&1) && cptr->is_4op_attached) continue;
if (cptr->is_4op_attached) continue; // this is more correct
#else
cptr = &OPL->op[cur_ch];
#endif
// check for FM/AM
if (OPL->adlibreg[ARC_FEEDBACK+k]&1)
{
#if defined(OPLTYPE_IS_OPL3)
//if ((OPL->adlibreg[0x105]&1) && cptr->is_4op)
if (cptr->is_4op) // this is more correct
{
if (OPL->adlibreg[ARC_FEEDBACK+k+3]&1)
{
// AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4)
if (cptr[0].op_state != OF_TYPE_OFF)
{
if (cptr[0].vibrato)
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[0],vibval1[i]);
opfuncs[cptr[0].op_state](&cptr[0]);
operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
chanval = cptr[0].cval;
CHANVAL_OUT(3) // Note: Op 1 of 4, so it needs to use the panning bits of Op 4 (Ch+3)
}
}
if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF))
{
if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF))
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if (cptr[9].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[3].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[9],vibval1[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],0,tremval1[i]);
operator_advance(OPL, &cptr[3],0);
opfuncs[cptr[3].op_state](&cptr[3]);
operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
chanval = cptr[3].cval;
CHANVAL_OUT(3)
}
}
if (cptr[3+9].op_state != OF_TYPE_OFF)
{
if (cptr[3+9].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[3+9],0);
opfuncs[cptr[3+9].op_state](&cptr[3+9]);
operator_output(&cptr[3+9],0,tremval1[i]);
chanval = cptr[3+9].cval;
CHANVAL_OUT(3)
}
}
}
else
{
// AM-FM-style synthesis (op1[fb] + (op2 * op3 * op4))
if (cptr[0].op_state != OF_TYPE_OFF)
{
if (cptr[0].vibrato)
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[0],vibval1[i]);
opfuncs[cptr[0].op_state](&cptr[0]);
operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
chanval = cptr[0].cval;
CHANVAL_OUT(3)
}
}
if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF))
{
if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if (cptr[9].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[3].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
if (cptr[3+9].tremolo)
tremval3 = trem_lut; // tremolo enabled, use table
else
tremval3 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[9],vibval1[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],0,tremval1[i]);
operator_advance(OPL, &cptr[3],0);
opfuncs[cptr[3].op_state](&cptr[3]);
operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
operator_advance(OPL, &cptr[3+9],0);
opfuncs[cptr[3+9].op_state](&cptr[3+9]);
operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval3[i]);
chanval = cptr[3+9].cval;
CHANVAL_OUT(3)
}
}
}
continue;
}
#endif
// 2op additive synthesis
if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF))
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF))
{
vibval2 = vibval_var2;
for (i=0;i<endsamples;i++)
vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval2 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[9].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
// carrier1
operator_advance(OPL, &cptr[0],vibval1[i]);
opfuncs[cptr[0].op_state](&cptr[0]);
operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
// carrier2
operator_advance(OPL, &cptr[9],vibval2[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],0,tremval2[i]);
chanval = cptr[9].cval + cptr[0].cval;
CHANVAL_OUT(0)
}
}
else
{
#if defined(OPLTYPE_IS_OPL3)
//if ((OPL->adlibreg[0x105]&1) && cptr->is_4op)
if (cptr->is_4op) // this is more correct
{
if (OPL->adlibreg[ARC_FEEDBACK+k+3]&1)
{
// FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4))
if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF))
{
if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF))
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF))
{
vibval2 = vibval_var2;
for (i=0;i<endsamples;i++)
vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval2 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[9].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[0],vibval1[i]);
opfuncs[cptr[0].op_state](&cptr[0]);
operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
operator_advance(OPL, &cptr[9],vibval2[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
chanval = cptr[9].cval;
CHANVAL_OUT(3)
}
}
if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF))
{
if (cptr[3].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[3+9].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[3],0);
opfuncs[cptr[3].op_state](&cptr[3]);
operator_output(&cptr[3],0,tremval1[i]);
operator_advance(OPL, &cptr[3+9],0);
opfuncs[cptr[3+9].op_state](&cptr[3+9]);
operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval2[i]);
chanval = cptr[3+9].cval;
CHANVAL_OUT(3)
}
}
}
else
{
// FM-FM-style synthesis (op1[fb] * op2 * op3 * op4)
if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF) ||
(cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF))
{
if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF))
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF))
{
vibval2 = vibval_var2;
for (i=0;i<endsamples;i++)
vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval2 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[9].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
if (cptr[3].tremolo)
tremval3 = trem_lut; // tremolo enabled, use table
else
tremval3 = tremval_const;
if (cptr[3+9].tremolo)
tremval4 = trem_lut; // tremolo enabled, use table
else
tremval4 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
operator_advance(OPL, &cptr[0],vibval1[i]);
opfuncs[cptr[0].op_state](&cptr[0]);
operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
operator_advance(OPL, &cptr[9],vibval2[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
operator_advance(OPL, &cptr[3],0);
opfuncs[cptr[3].op_state](&cptr[3]);
operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval3[i]);
operator_advance(OPL, &cptr[3+9],0);
opfuncs[cptr[3+9].op_state](&cptr[3+9]);
operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval4[i]);
chanval = cptr[3+9].cval;
CHANVAL_OUT(3)
}
}
}
continue;
}
#endif
// 2op frequency modulation
if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF))
{
vibval1 = vibval_var1;
for (i=0;i<endsamples;i++)
vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval1 = vibval_const;
if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF))
{
vibval2 = vibval_var2;
for (i=0;i<endsamples;i++)
vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
}
else
vibval2 = vibval_const;
if (cptr[0].tremolo)
tremval1 = trem_lut; // tremolo enabled, use table
else
tremval1 = tremval_const;
if (cptr[9].tremolo)
tremval2 = trem_lut; // tremolo enabled, use table
else
tremval2 = tremval_const;
// calculate channel output
for (i=0;i<endsamples;i++)
{
Bit32s chanval;
// modulator
operator_advance(OPL, &cptr[0],vibval1[i]);
opfuncs[cptr[0].op_state](&cptr[0]);
operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
// carrier
operator_advance(OPL, &cptr[9],vibval2[i]);
opfuncs[cptr[9].op_state](&cptr[9]);
operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
chanval = cptr[9].cval;
CHANVAL_OUT(0)
}
}
}
/*#if defined(OPLTYPE_IS_OPL3)
if (adlibreg[0x105]&1)
{
// convert to 16bit samples (stereo)
for (i=0;i<endsamples;i++)
{
clipit16(outbufl[i],sndptr++);
clipit16(outbufr[i],sndptr++);
}
}
else
{
// convert to 16bit samples (mono)
for (i=0;i<endsamples;i++)
{
clipit16(outbufl[i],sndptr++);
clipit16(outbufl[i],sndptr++);
}
}
#else
// convert to 16bit samples
for (i=0;i<endsamples;i++)
clipit16(outbufl[i],sndptr++);
#endif*/
}
}
void ADLIBEMU(set_mute_mask)(void *chip, UINT32 MuteMask)
{
OPL_DATA* OPL = (OPL_DATA*)chip;
UINT8 CurChn;
for (CurChn = 0; CurChn < NUM_CHANNELS + 5; CurChn ++)
OPL->MuteChn[CurChn] = (MuteMask >> CurChn) & 0x01;
return;
}