373 lines
9.2 KiB
C
373 lines
9.2 KiB
C
#include "resampler.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Copyright (C) 2004-2008 Shay Green.
|
|
Copyright (C) 2021-2022 Christopher Snowhill. This module is free software; you
|
|
can redistribute it and/or modify it under the terms of the GNU Lesser
|
|
General Public License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version. This
|
|
module is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
|
details. You should have received a copy of the GNU Lesser General Public
|
|
License along with this module; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
#undef PI
|
|
#define PI 3.1415926535897932384626433832795029
|
|
|
|
enum { imp_scale = 0x7FFF };
|
|
typedef int16_t imp_t;
|
|
typedef int32_t imp_off_t; /* for max_res of 512 and impulse width of 32, end offsets must be 32 bits */
|
|
|
|
#if RESAMPLER_BITS == 16
|
|
typedef int32_t intermediate_t;
|
|
#elif RESAMPLER_BITS == 32
|
|
typedef int64_t intermediate_t;
|
|
#endif
|
|
|
|
static void gen_sinc( double rolloff, int width, double offset, double spacing, double scale,
|
|
int count, imp_t* out )
|
|
{
|
|
double const maxh = 256;
|
|
double const step = PI / maxh * spacing;
|
|
double const to_w = maxh * 2 / width;
|
|
double const pow_a_n = pow( rolloff, maxh );
|
|
double angle = (count / 2 - 1 + offset) * -step;
|
|
scale /= maxh * 2;
|
|
|
|
while ( count-- )
|
|
{
|
|
double w;
|
|
*out++ = 0;
|
|
w = angle * to_w;
|
|
if ( fabs( w ) < PI )
|
|
{
|
|
double rolloff_cos_a = rolloff * cos( angle );
|
|
double num = 1 - rolloff_cos_a -
|
|
pow_a_n * cos( maxh * angle ) +
|
|
pow_a_n * rolloff * cos( (maxh - 1) * angle );
|
|
double den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff;
|
|
double sinc = scale * num / den - scale;
|
|
|
|
out [-1] = (imp_t) (cos( w ) * sinc + sinc);
|
|
}
|
|
angle += step;
|
|
}
|
|
}
|
|
|
|
enum { width = 64 };
|
|
enum { stereo = 2 };
|
|
enum { max_res = 512 };
|
|
enum { min_width = (width < 4 ? 4 : width) };
|
|
enum { adj_width = min_width / 4 * 4 + 2 };
|
|
enum { write_offset = adj_width * stereo };
|
|
|
|
enum { buffer_size = 128 };
|
|
|
|
typedef struct _resampler
|
|
{
|
|
int width_;
|
|
int rate_;
|
|
int inptr;
|
|
int infilled;
|
|
int outptr;
|
|
int outfilled;
|
|
|
|
int latency;
|
|
|
|
imp_t const* imp;
|
|
imp_t impulses [max_res * (adj_width + 2 * (sizeof(imp_off_t) / sizeof(imp_t)))];
|
|
sample_t buffer_in[buffer_size * stereo * 2];
|
|
sample_t buffer_out[buffer_size * stereo];
|
|
} resampler;
|
|
|
|
void * resampler_create()
|
|
{
|
|
resampler *r = (resampler *) malloc(sizeof(resampler));
|
|
if (r) resampler_clear(r);
|
|
return r;
|
|
}
|
|
|
|
void * resampler_dup(void *_r)
|
|
{
|
|
resampler *r = (resampler *)_r;
|
|
resampler *t = (resampler *) malloc(sizeof(resampler));
|
|
if (r && t)
|
|
{
|
|
memcpy(t, r, sizeof(resampler));
|
|
t->imp = t->impulses + (r->imp - r->impulses);
|
|
}
|
|
else if (t)
|
|
{
|
|
resampler_clear(t);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
void resampler_destroy(void *r)
|
|
{
|
|
free(r);
|
|
}
|
|
|
|
void resampler_clear(void *_r)
|
|
{
|
|
resampler * r = (resampler *)_r;
|
|
r->width_ = adj_width;
|
|
r->inptr = 0;
|
|
r->infilled = 0;
|
|
r->outptr = 0;
|
|
r->outfilled = 0;
|
|
r->latency = 0;
|
|
r->imp = r->impulses;
|
|
|
|
resampler_set_rate(r, 1.0);
|
|
}
|
|
|
|
void resampler_set_rate( void *_r, double new_factor )
|
|
{
|
|
resampler *rs = (resampler *)_r;
|
|
|
|
double const rolloff = 0.999;
|
|
double const gain = 1.0;
|
|
|
|
int step;
|
|
double fraction;
|
|
|
|
double filter;
|
|
double pos = 0.0;
|
|
|
|
imp_t* out;
|
|
|
|
int n;
|
|
|
|
/* determine number of sub-phases that yield lowest error */
|
|
double ratio_ = 0.0;
|
|
int res = -1;
|
|
{
|
|
double least_error = 2;
|
|
double pos = 0;
|
|
int r;
|
|
for ( r = 1; r <= max_res; r++ )
|
|
{
|
|
double nearest, error;
|
|
pos += new_factor;
|
|
nearest = floor( pos + 0.5 );
|
|
error = fabs( pos - nearest );
|
|
if ( error < least_error )
|
|
{
|
|
res = r;
|
|
ratio_ = nearest / res;
|
|
least_error = error;
|
|
}
|
|
}
|
|
}
|
|
rs->rate_ = ratio_;
|
|
|
|
/* how much of input is used for each output sample */
|
|
step = stereo * (int) floor( ratio_ );
|
|
fraction = fmod( ratio_, 1.0 );
|
|
|
|
filter = (ratio_ < 1.0) ? 1.0 : 1.0 / ratio_;
|
|
/*int input_per_cycle = 0;*/
|
|
out = rs->impulses;
|
|
for ( n = res; --n >= 0; )
|
|
{
|
|
int cur_step;
|
|
|
|
gen_sinc( rolloff, (int) (rs->width_ * filter + 1) & ~1, pos, filter,
|
|
(double)(imp_scale * gain * filter), (int) rs->width_, out );
|
|
out += rs->width_;
|
|
|
|
cur_step = step;
|
|
pos += fraction;
|
|
if ( pos >= 0.9999999 )
|
|
{
|
|
pos -= 1.0;
|
|
cur_step += stereo;
|
|
}
|
|
|
|
((imp_off_t*)out)[0] = (cur_step - rs->width_ * 2 + 4) * sizeof (sample_t);
|
|
((imp_off_t*)out)[1] = 2 * sizeof (imp_t) + 2 * sizeof (imp_off_t);
|
|
out += 2 * (sizeof(imp_off_t) / sizeof(imp_t));
|
|
/*input_per_cycle += cur_step;*/
|
|
}
|
|
/* last offset moves back to beginning of impulses*/
|
|
((imp_off_t*)out) [-1] -= (char*) out - (char*) rs->impulses;
|
|
|
|
rs->imp = rs->impulses;
|
|
}
|
|
|
|
int resampler_get_free(void *_r)
|
|
{
|
|
resampler *r = (resampler *)_r;
|
|
return buffer_size * stereo - r->infilled;
|
|
}
|
|
|
|
int resampler_get_min_fill(void *_r)
|
|
{
|
|
resampler *r = (resampler *)_r;
|
|
const int min_needed = write_offset + stereo;
|
|
const int latency = r->latency ? 0 : adj_width;
|
|
int min_free = min_needed - r->infilled - latency;
|
|
return min_free < 0 ? 0 : min_free;
|
|
}
|
|
|
|
void resampler_write_pair(void *_r, sample_t ls, sample_t rs)
|
|
{
|
|
resampler *r = (resampler *)_r;
|
|
|
|
if (!r->latency)
|
|
{
|
|
int i;
|
|
for (i = 0; i < adj_width / 2; ++i)
|
|
{
|
|
r->buffer_in[r->inptr + 0] = 0;
|
|
r->buffer_in[r->inptr + 1] = 0;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 0] = 0;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 1] = 0;
|
|
r->inptr = (r->inptr + stereo) % (buffer_size * stereo);
|
|
r->infilled += stereo;
|
|
}
|
|
r->latency = 1;
|
|
}
|
|
|
|
if (r->infilled < buffer_size * stereo)
|
|
{
|
|
r->buffer_in[r->inptr + 0] = ls;
|
|
r->buffer_in[r->inptr + 1] = rs;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 0] = ls;
|
|
r->buffer_in[buffer_size * stereo + r->inptr + 1] = rs;
|
|
r->inptr = (r->inptr + stereo) % (buffer_size * stereo);
|
|
r->infilled += stereo;
|
|
}
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#define restrict __restrict
|
|
#endif
|
|
|
|
static const sample_t * resampler_inner_loop( resampler *r, sample_t** out_,
|
|
sample_t const* out_end, sample_t const in [], int in_size )
|
|
{
|
|
in_size -= write_offset;
|
|
if ( in_size > 0 )
|
|
{
|
|
sample_t* restrict out = *out_;
|
|
sample_t const* const in_end = in + in_size;
|
|
imp_t const* imp = r->imp;
|
|
|
|
do
|
|
{
|
|
/* accumulate in extended precision*/
|
|
int pt = imp [0];
|
|
int n;
|
|
intermediate_t l = (intermediate_t)pt * (intermediate_t)(in [0]);
|
|
intermediate_t r = (intermediate_t)pt * (intermediate_t)(in [1]);
|
|
if ( out >= out_end )
|
|
break;
|
|
for ( n = (adj_width - 2) / 2; n; --n )
|
|
{
|
|
pt = imp [1];
|
|
l += (intermediate_t)pt * (intermediate_t)(in [2]);
|
|
r += (intermediate_t)pt * (intermediate_t)(in [3]);
|
|
|
|
/* pre-increment more efficient on some RISC processors*/
|
|
imp += 2;
|
|
pt = imp [0];
|
|
r += (intermediate_t)pt * (intermediate_t)(in [5]);
|
|
in += 4;
|
|
l += (intermediate_t)pt * (intermediate_t)(in [0]);
|
|
}
|
|
pt = imp [1];
|
|
l += (intermediate_t)pt * (intermediate_t)(in [2]);
|
|
r += (intermediate_t)pt * (intermediate_t)(in [3]);
|
|
|
|
/* these two "samples" after the end of the impulse give the
|
|
* proper offsets to the next input sample and next impulse */
|
|
in = (sample_t const*) ((char const*) in + ((imp_off_t*)(&imp [2]))[0]); /* some negative value */
|
|
imp = (imp_t const*) ((char const*) imp + ((imp_off_t*)(&imp [2]))[1]); /* small positive or large negative */
|
|
|
|
out [0] = (sample_t) (l >> 15);
|
|
out [1] = (sample_t) (r >> 15);
|
|
out += 2;
|
|
}
|
|
while ( in < in_end );
|
|
|
|
r->imp = imp;
|
|
*out_ = out;
|
|
}
|
|
return in;
|
|
}
|
|
|
|
#undef restrict
|
|
|
|
static int resampler_wrapper( resampler *r, sample_t out [], int* out_size,
|
|
sample_t const in [], int in_size )
|
|
{
|
|
sample_t* out_ = out;
|
|
int result = resampler_inner_loop( r, &out_, out + *out_size, in, in_size ) - in;
|
|
|
|
*out_size = out_ - out;
|
|
return result;
|
|
}
|
|
|
|
static void resampler_fill( resampler *r )
|
|
{
|
|
while (!r->outfilled && r->infilled)
|
|
{
|
|
int writepos = ( r->outptr + r->outfilled ) % (buffer_size * stereo);
|
|
int writesize = (buffer_size * stereo) - writepos;
|
|
int inread;
|
|
if ( writesize > ( buffer_size * stereo - r->outfilled ) )
|
|
writesize = buffer_size * stereo - r->outfilled;
|
|
inread = resampler_wrapper(r, &r->buffer_out[writepos], &writesize, &r->buffer_in[buffer_size * stereo + r->inptr - r->infilled], r->infilled);
|
|
r->infilled -= inread;
|
|
r->outfilled += writesize;
|
|
if (!inread)
|
|
break;
|
|
}
|
|
}
|
|
|
|
int resampler_get_avail(void *_r)
|
|
{
|
|
resampler *r = (resampler *)_r;
|
|
if (r->outfilled < stereo && r->infilled >= r->width_)
|
|
resampler_fill( r );
|
|
return r->outfilled;
|
|
}
|
|
|
|
static void resampler_read_pair_internal( resampler *r, sample_t *ls, sample_t *rs, int advance )
|
|
{
|
|
if (r->outfilled < stereo)
|
|
resampler_fill( r );
|
|
if (r->outfilled < stereo)
|
|
{
|
|
*ls = 0;
|
|
*rs = 0;
|
|
return;
|
|
}
|
|
*ls = r->buffer_out[r->outptr + 0];
|
|
*rs = r->buffer_out[r->outptr + 1];
|
|
if (advance)
|
|
{
|
|
r->outptr = (r->outptr + 2) % (buffer_size * stereo);
|
|
r->outfilled -= stereo;
|
|
}
|
|
}
|
|
|
|
void resampler_read_pair( void *_r, sample_t *ls, sample_t *rs )
|
|
{
|
|
resampler *r = (resampler *)_r;
|
|
resampler_read_pair_internal(r, ls, rs, 1);
|
|
}
|
|
|
|
void resampler_peek_pair( void *_r, sample_t *ls, sample_t *rs )
|
|
{
|
|
resampler *r = (resampler *)_r;
|
|
resampler_read_pair_internal(r, ls, rs, 0);
|
|
}
|