cog/Frameworks/GME/vgmplay/chips/np_nes_apu.c

512 lines
11 KiB
C

//
// NES 2A03
//
// Ported from NSFPlay 2.2 to VGMPlay (including C++ -> C conversion)
// by Valley Bell on 24 September 2013
// Updated to NSFPlay 2.3 on 26 September 2013
// (Note: Encoding is UTF-8)
//#include <assert.h>
#include <stdlib.h>
#include <string.h> // for memset()
#include <stddef.h> // for NULL
#include "mamedef.h"
#include "../stdbool.h"
#include "np_nes_apu.h"
// Master Clock: 21477272 (NTSC)
// APU Clock = Master Clock / 12
#define DEFAULT_CLOCK 1789772.0 // not sure if this shouldn't be 1789772,667 instead
#define DEFAULT_RATE 44100
/** Upper half of APU **/
enum
{
OPT_UNMUTE_ON_RESET=0,
OPT_NONLINEAR_MIXER,
OPT_PHASE_REFRESH,
OPT_DUTY_SWAP,
OPT_END
};
enum
{
SQR0_MASK = 1,
SQR1_MASK = 2,
};
// Note: For increased speed, I'll inline all of NSFPlay's Counter member functions.
#define COUNTER_SHIFT 24
typedef struct _Counter Counter;
struct _Counter
{
double ratio;
UINT32 val, step;
};
#define COUNTER_setcycle(cntr, s) (cntr).step = (UINT32)((cntr).ratio / (s + 1))
#define COUNTER_iup(cntr) (cntr).val += (cntr).step
#define COUNTER_value(cntr) ((cntr).val >> COUNTER_SHIFT)
#define COUNTER_init(cntr, clk, rate) \
{ \
(cntr).ratio = (1 << COUNTER_SHIFT) * (1.0 * clk / rate); \
(cntr).step = (UINT32)((cntr).ratio + 0.5); \
(cntr).val = 0; \
}
typedef struct _NES_APU NES_APU;
struct _NES_APU
{
int option[OPT_END]; // 各種オプション
int mask;
INT32 sm[2][2];
UINT32 gclock;
UINT8 reg[0x20];
INT32 out[2];
double rate, clock;
INT32 square_table[32]; // nonlinear mixer
int scounter[2]; // frequency divider
int sphase[2]; // phase counter
int duty[2];
int volume[2];
int freq[2];
int sfreq[2];
bool sweep_enable[2];
bool sweep_mode[2];
bool sweep_write[2];
int sweep_div_period[2];
int sweep_div[2];
int sweep_amount[2];
bool envelope_disable[2];
bool envelope_loop[2];
bool envelope_write[2];
int envelope_div_period[2];
int envelope_div[2];
int envelope_counter[2];
int length_counter[2];
bool enable[2];
Counter tick_count;
UINT32 tick_last;
};
static void sweep_sqr(NES_APU* apu, int ch); // calculates target sweep frequency
static INT32 calc_sqr(NES_APU* apu, int ch, UINT32 clocks);
static void Tick(NES_APU* apu, UINT32 clocks);
static void sweep_sqr(NES_APU* apu, int i)
{
int shifted = apu->freq[i] >> apu->sweep_amount[i];
if (i == 0 && apu->sweep_mode[i]) shifted += 1;
apu->sfreq[i] = apu->freq[i] + (apu->sweep_mode[i] ? -shifted : shifted);
//DEBUG_OUT("shifted[%d] = %d (%d >> %d)\n",i,shifted,apu->freq[i],apu->sweep_amount[i]);
}
void NES_APU_np_FrameSequence(void* chip, int s)
{
NES_APU* apu = (NES_APU*)chip;
int i;
//DEBUG_OUT("FrameSequence(%d)\n",s);
if (s > 3) return; // no operation in step 4
// 240hz clock
for (i=0; i < 2; ++i)
{
bool divider = false;
if (apu->envelope_write[i])
{
apu->envelope_write[i] = false;
apu->envelope_counter[i] = 15;
apu->envelope_div[i] = 0;
}
else
{
++apu->envelope_div[i];
if (apu->envelope_div[i] > apu->envelope_div_period[i])
{
divider = true;
apu->envelope_div[i] = 0;
}
}
if (divider)
{
if (apu->envelope_loop[i] && apu->envelope_counter[i] == 0)
apu->envelope_counter[i] = 15;
else if (apu->envelope_counter[i] > 0)
--apu->envelope_counter[i];
}
}
// 120hz clock
if ((s&1) == 0)
for (i=0; i < 2; ++i)
{
if (!apu->envelope_loop[i] && (apu->length_counter[i] > 0))
--apu->length_counter[i];
if (apu->sweep_enable[i])
{
//DEBUG_OUT("Clock sweep: %d\n", i);
--apu->sweep_div[i];
if (apu->sweep_div[i] <= 0)
{
sweep_sqr(apu, i); // calculate new sweep target
//DEBUG_OUT("sweep_div[%d] (0/%d)\n",i,apu->sweep_div_period[i]);
//DEBUG_OUT("freq[%d]=%d > sfreq[%d]=%d\n",i,apu->freq[i],i,apu->sfreq[i]);
if (apu->freq[i] >= 8 && apu->sfreq[i] < 0x800 && apu->sweep_amount[i] > 0) // update frequency if appropriate
{
apu->freq[i] = apu->sfreq[i] < 0 ? 0 : apu->sfreq[i];
if (apu->scounter[i] > apu->freq[i]) apu->scounter[i] = apu->freq[i];
}
apu->sweep_div[i] = apu->sweep_div_period[i] + 1;
//DEBUG_OUT("freq[%d]=%d\n",i,apu->freq[i]);
}
if (apu->sweep_write[i])
{
apu->sweep_div[i] = apu->sweep_div_period[i] + 1;
apu->sweep_write[i] = false;
}
}
}
}
static INT32 calc_sqr(NES_APU* apu, int i, UINT32 clocks)
{
static const INT16 sqrtbl[4][16] = {
{0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0},
{1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
};
INT32 ret = 0;
apu->scounter[i] += clocks;
while (apu->scounter[i] > apu->freq[i])
{
apu->sphase[i] = (apu->sphase[i] + 1) & 15;
apu->scounter[i] -= (apu->freq[i] + 1);
}
//INT32 ret = 0;
if (apu->length_counter[i] > 0 &&
apu->freq[i] >= 8 &&
apu->sfreq[i] < 0x800
)
{
int v = apu->envelope_disable[i] ? apu->volume[i] : apu->envelope_counter[i];
ret = sqrtbl[apu->duty[i]][apu->sphase[i]] ? v : 0;
}
return ret;
}
bool NES_APU_np_Read(void* chip, UINT32 adr, UINT32* val)
{
NES_APU* apu = (NES_APU*)chip;
if (0x4000 <= adr && adr < 0x4008)
{
*val |= apu->reg[adr&0x7];
return true;
}
else if(adr==0x4015)
{
*val |= (apu->length_counter[1]?2:0)|(apu->length_counter[0]?1:0);
return true;
}
else
return false;
}
static void Tick(NES_APU* apu, UINT32 clocks)
{
apu->out[0] = calc_sqr(apu, 0, clocks);
apu->out[1] = calc_sqr(apu, 1, clocks);
}
// 生成される波形の振幅は0-8191
UINT32 NES_APU_np_Render(void* chip, INT32 b[2])
{
NES_APU* apu = (NES_APU*)chip;
INT32 m[2];
COUNTER_iup(apu->tick_count);
Tick(apu, (COUNTER_value(apu->tick_count) - apu->tick_last) & 0xFF);
apu->tick_last = COUNTER_value(apu->tick_count);
apu->out[0] = (apu->mask & 1) ? 0 : apu->out[0];
apu->out[1] = (apu->mask & 2) ? 0 : apu->out[1];
if(apu->option[OPT_NONLINEAR_MIXER])
{
INT32 voltage;
INT32 ref;
voltage = apu->square_table[apu->out[0] + apu->out[1]];
m[0] = apu->out[0] << 6;
m[1] = apu->out[1] << 6;
ref = m[0] + m[1];
if (ref > 0)
{
m[0] = (m[0] * voltage) / ref;
m[1] = (m[1] * voltage) / ref;
}
else
{
m[0] = voltage;
m[1] = voltage;
}
}
else
{
m[0] = apu->out[0] << 6;
m[1] = apu->out[1] << 6;
}
// Shifting is (x-2) to match the volume of MAME's NES APU sound core
b[0] = m[0] * apu->sm[0][0];
b[0] += m[1] * apu->sm[0][1];
b[0] >>= 7-2; // was 7, but is now 8 for bipolar square
b[1] = m[0] * apu->sm[1][0];
b[1] += m[1] * apu->sm[1][1];
b[1] >>= 7-2; // see above
return 2;
}
void* NES_APU_np_Create(int clock, int rate)
{
NES_APU* apu;
int i, c, t;
apu = (NES_APU*)malloc(sizeof(NES_APU));
if (apu == NULL)
return NULL;
memset(apu, 0x00, sizeof(NES_APU));
//NES_APU_np_SetClock(apu, DEFAULT_CLOCK);
//NES_APU_np_SetRate(apu, DEFAULT_RATE);
NES_APU_np_SetClock(apu, clock);
NES_APU_np_SetRate(apu, rate);
apu->option[OPT_UNMUTE_ON_RESET] = true;
apu->option[OPT_PHASE_REFRESH] = true;
apu->option[OPT_NONLINEAR_MIXER] = true;
apu->option[OPT_DUTY_SWAP] = false;
apu->square_table[0] = 0;
for(i=1;i<32;i++)
apu->square_table[i]=(INT32)((8192.0*95.88)/(8128.0/i+100));
for(c=0;c<2;++c)
for(t=0;t<2;++t)
apu->sm[c][t] = 128;
return apu;
}
void NES_APU_np_Destroy(void* chip)
{
free(chip);
}
void NES_APU_np_Reset(void* chip)
{
NES_APU* apu = (NES_APU*)chip;
int i;
apu->gclock = 0;
apu->mask = 0;
apu->scounter[0] = 0;
apu->scounter[1] = 0;
apu->sphase[0] = 0;
apu->sphase[0] = 0;
apu->sweep_div[0] = 1;
apu->sweep_div[1] = 1;
apu->envelope_div[0] = 0;
apu->envelope_div[1] = 0;
apu->length_counter[0] = 0;
apu->length_counter[1] = 0;
apu->envelope_counter[0] = 0;
apu->envelope_counter[1] = 0;
for (i = 0x4000; i < 0x4008; i++)
NES_APU_np_Write(apu, i, 0);
NES_APU_np_Write(apu, 0x4015, 0);
if (apu->option[OPT_UNMUTE_ON_RESET])
NES_APU_np_Write(apu, 0x4015, 0x0f);
for (i = 0; i < 2; i++)
apu->out[i] = 0;
NES_APU_np_SetRate(apu, apu->rate);
}
void NES_APU_np_SetOption(void* chip, int id, int val)
{
NES_APU* apu = (NES_APU*)chip;
if(id<OPT_END) apu->option[id] = val;
}
void NES_APU_np_SetClock(void* chip, double c)
{
NES_APU* apu = (NES_APU*)chip;
apu->clock = c;
}
void NES_APU_np_SetRate(void* chip, double r)
{
NES_APU* apu = (NES_APU*)chip;
apu->rate = r ? r : DEFAULT_RATE;
COUNTER_init(apu->tick_count, apu->clock, apu->rate);
apu->tick_last = 0;
}
void NES_APU_np_SetMask(void* chip, int m)
{
NES_APU* apu = (NES_APU*)chip;
apu->mask = m;
}
void NES_APU_np_SetStereoMix(void* chip, int trk, INT16 mixl, INT16 mixr)
{
NES_APU* apu = (NES_APU*)chip;
if (trk < 0) return;
if (trk > 1) return;
apu->sm[0][trk] = mixl;
apu->sm[1][trk] = mixr;
}
bool NES_APU_np_Write(void* chip, UINT32 adr, UINT32 val)
{
NES_APU* apu = (NES_APU*)chip;
int ch;
static const UINT8 length_table[32] = {
0x0A, 0xFE,
0x14, 0x02,
0x28, 0x04,
0x50, 0x06,
0xA0, 0x08,
0x3C, 0x0A,
0x0E, 0x0C,
0x1A, 0x0E,
0x0C, 0x10,
0x18, 0x12,
0x30, 0x14,
0x60, 0x16,
0xC0, 0x18,
0x48, 0x1A,
0x10, 0x1C,
0x20, 0x1E
};
if (0x4000 <= adr && adr < 0x4008)
{
//DEBUG_OUT("$%04X = %02X\n",adr,val);
adr &= 0xf;
ch = adr >> 2;
switch (adr)
{
case 0x0:
case 0x4:
apu->volume[ch] = val & 15;
apu->envelope_disable[ch] = (val >> 4) & 1;
apu->envelope_loop[ch] = (val >> 5) & 1;
apu->envelope_div_period[ch] = (val & 15);
apu->duty[ch] = (val >> 6) & 3;
if (apu->option[OPT_DUTY_SWAP])
{
if (apu->duty[ch] == 1) apu->duty[ch] = 2;
else if (apu->duty[ch] == 2) apu->duty[ch] = 1;
}
break;
case 0x1:
case 0x5:
apu->sweep_enable[ch] = (val >> 7) & 1;
apu->sweep_div_period[ch] = (((val >> 4) & 7));
apu->sweep_mode[ch] = (val >> 3) & 1;
apu->sweep_amount[ch] = val & 7;
apu->sweep_write[ch] = true;
sweep_sqr(apu, ch);
break;
case 0x2:
case 0x6:
apu->freq[ch] = val | (apu->freq[ch] & 0x700) ;
sweep_sqr(apu, ch);
if (apu->scounter[ch] > apu->freq[ch]) apu->scounter[ch] = apu->freq[ch];
break;
case 0x3:
case 0x7:
apu->freq[ch] = (apu->freq[ch] & 0xFF) | ((val & 0x7) << 8) ;
if (apu->option[OPT_PHASE_REFRESH])
apu->sphase[ch] = 0;
apu->envelope_write[ch] = true;
if (apu->enable[ch])
{
apu->length_counter[ch] = length_table[(val >> 3) & 0x1f];
}
sweep_sqr(apu, ch);
if (apu->scounter[ch] > apu->freq[ch]) apu->scounter[ch] = apu->freq[ch];
break;
default:
return false;
}
apu->reg[adr] = val;
return true;
}
else if (adr == 0x4015)
{
apu->enable[0] = (val & 1) ? true : false;
apu->enable[1] = (val & 2) ? true : false;
if (!apu->enable[0])
apu->length_counter[0] = 0;
if (!apu->enable[1])
apu->length_counter[1] = 0;
apu->reg[adr-0x4000] = val;
return true;
}
// 4017 is handled in np_nes_dmc.c
//else if (adr == 0x4017)
//{
//}
return false;
}