cog/Frameworks/OpenMPT.old/OpenMPT/soundlib/FloatMixer.h

309 lines
10 KiB
C++

/*
* FloatMixer.h
* ------------
* Purpose: Floating point mixer classes
* Notes : (currently none)
* Authors: OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#pragma once
#include "BuildSettings.h"
#include "MixerInterface.h"
#include "Resampler.h"
OPENMPT_NAMESPACE_BEGIN
template<int channelsOut, int channelsIn, typename out, typename in, int int2float>
struct IntToFloatTraits : public MixerTraits<channelsOut, channelsIn, out, in>
{
static_assert(std::numeric_limits<input_t>::is_integer, "Input must be integer");
static_assert(!std::numeric_limits<output_t>::is_integer, "Output must be floating point");
static MPT_CONSTEXPR11_FUN output_t Convert(const input_t x)
{
return static_cast<output_t>(x) * (static_cast<output_t>(1) / static_cast<output_t>(int2float));
}
};
typedef IntToFloatTraits<2, 1, mixsample_t, int8, -int8_min> Int8MToFloatS;
typedef IntToFloatTraits<2, 1, mixsample_t, int16, -int16_min> Int16MToFloatS;
typedef IntToFloatTraits<2, 2, mixsample_t, int8, -int8_min> Int8SToFloatS;
typedef IntToFloatTraits<2, 2, mixsample_t, int16, -int16_min> Int16SToFloatS;
//////////////////////////////////////////////////////////////////////////
// Interpolation templates
template<class Traits>
struct LinearInterpolation
{
MPT_FORCEINLINE LinearInterpolation(const ModChannel &, const CResampler &, unsigned int) { }
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const typename Traits::output_t fract = posLo / static_cast<typename Traits::output_t>(0x100000000); //CResampler::LinearTablef[posLo >> 24];
for(int i = 0; i < Traits::numChannelsIn; i++)
{
typename Traits::output_t srcVol = Traits::Convert(inBuffer[i]);
typename Traits::output_t destVol = Traits::Convert(inBuffer[i + Traits::numChannelsIn]);
outSample[i] = srcVol + fract * (destVol - srcVol);
}
}
};
template<class Traits>
struct FastSincInterpolation
{
MPT_FORCEINLINE FastSincInterpolation(const ModChannel &, const CResampler &, unsigned int) { }
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const typename Traits::output_t *lut = CResampler::FastSincTablef + ((posLo >> 22) & 0x3FC);
for(int i = 0; i < Traits::numChannelsIn; i++)
{
outSample[i] =
lut[0] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
+ lut[1] * Traits::Convert(inBuffer[i])
+ lut[2] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
+ lut[3] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn]);
}
}
};
template<class Traits>
struct PolyphaseInterpolation
{
const typename Traits::output_t *sinc;
MPT_FORCEINLINE PolyphaseInterpolation(const ModChannel &chn, const CResampler &resampler, unsigned int)
{
sinc = (((chn.increment > SamplePosition(0x130000000ll)) || (chn.increment < -SamplePosition(-0x130000000ll))) ?
(((chn.increment > SamplePosition(0x180000000ll)) || (chn.increment < SamplePosition(-0x180000000ll))) ? resampler.gDownsample2x : resampler.gDownsample13x) : resampler.gKaiserSinc);
}
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const typename Traits::output_t *lut = sinc + ((posLo >> (32 - SINC_PHASES_BITS)) & SINC_MASK) * SINC_WIDTH;
for(int i = 0; i < Traits::numChannelsIn; i++)
{
outSample[i] =
lut[0] * Traits::Convert(inBuffer[i - 3 * Traits::numChannelsIn])
+ lut[1] * Traits::Convert(inBuffer[i - 2 * Traits::numChannelsIn])
+ lut[2] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
+ lut[3] * Traits::Convert(inBuffer[i])
+ lut[4] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
+ lut[5] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn])
+ lut[6] * Traits::Convert(inBuffer[i + 3 * Traits::numChannelsIn])
+ lut[7] * Traits::Convert(inBuffer[i + 4 * Traits::numChannelsIn]);
}
}
};
template<class Traits>
struct FIRFilterInterpolation
{
const typename Traits::output_t *WFIRlut;
MPT_FORCEINLINE FIRFilterInterpolation(const ModChannel &, const CResampler &resampler, unsigned int)
{
WFIRlut = resampler.m_WindowedFIR.lut;
}
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const typename Traits::output_t * const lut = WFIRlut + ((((posLo >> 16) + WFIR_FRACHALVE) >> WFIR_FRACSHIFT) & WFIR_FRACMASK);
for(int i = 0; i < Traits::numChannelsIn; i++)
{
outSample[i] =
lut[0] * Traits::Convert(inBuffer[i - 3 * Traits::numChannelsIn])
+ lut[1] * Traits::Convert(inBuffer[i - 2 * Traits::numChannelsIn])
+ lut[2] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
+ lut[3] * Traits::Convert(inBuffer[i])
+ lut[4] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
+ lut[5] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn])
+ lut[6] * Traits::Convert(inBuffer[i + 3 * Traits::numChannelsIn])
+ lut[7] * Traits::Convert(inBuffer[i + 4 * Traits::numChannelsIn]);
}
}
};
//////////////////////////////////////////////////////////////////////////
// Mixing templates (add sample to stereo mix)
template<class Traits>
struct NoRamp
{
typename Traits::output_t lVol, rVol;
MPT_FORCEINLINE NoRamp(const ModChannel &chn)
{
lVol = static_cast<Traits::output_t>(chn.leftVol) * (1.0f / 4096.0f);
rVol = static_cast<Traits::output_t>(chn.rightVol) * (1.0f / 4096.0f);
}
};
struct Ramp
{
ModChannel &channel;
int32 lRamp, rRamp;
MPT_FORCEINLINE Ramp(ModChannel &chn)
: channel{chn}
{
lRamp = chn.rampLeftVol;
rRamp = chn.rampRightVol;
}
MPT_FORCEINLINE ~Ramp()
{
channel.rampLeftVol = lRamp; channel.leftVol = lRamp >> VOLUMERAMPPRECISION;
channel.rampRightVol = rRamp; channel.rightVol = rRamp >> VOLUMERAMPPRECISION;
}
};
// Legacy optimization: If chn.nLeftVol == chn.nRightVol, save one multiplication instruction
template<class Traits>
struct MixMonoFastNoRamp : public NoRamp<Traits>
{
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const outBuffer)
{
typename Traits::output_t vol = outSample[0] * lVol;
for(int i = 0; i < Traits::numChannelsOut; i++)
{
outBuffer[i] += vol;
}
}
};
template<class Traits>
struct MixMonoNoRamp : public NoRamp<Traits>
{
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &, typename Traits::output_t * const outBuffer)
{
outBuffer[0] += outSample[0] * lVol;
outBuffer[1] += outSample[0] * rVol;
}
};
template<class Traits>
struct MixMonoRamp : public Ramp
{
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const outBuffer)
{
// TODO volume is not float, can we optimize this?
lRamp += chn.leftRamp;
rRamp += chn.rightRamp;
outBuffer[0] += outSample[0] * (lRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
outBuffer[1] += outSample[0] * (rRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
}
};
template<class Traits>
struct MixStereoNoRamp : public NoRamp<Traits>
{
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &, typename Traits::output_t * const outBuffer)
{
outBuffer[0] += outSample[0] * lVol;
outBuffer[1] += outSample[1] * rVol;
}
};
template<class Traits>
struct MixStereoRamp : public Ramp
{
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const outBuffer)
{
// TODO volume is not float, can we optimize this?
lRamp += chn.leftRamp;
rRamp += chn.rightRamp;
outBuffer[0] += outSample[0] * (lRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
outBuffer[1] += outSample[1] * (rRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
}
};
//////////////////////////////////////////////////////////////////////////
// Filter templates
template<class Traits>
struct NoFilter
{
MPT_FORCEINLINE NoFilter(const ModChannel &) { }
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &, const ModChannel &) { }
};
// Resonant filter
template<class Traits>
struct ResonantFilter
{
ModChannel &channel;
// Filter history
typename Traits::output_t fy[Traits::numChannelsIn][2];
MPT_FORCEINLINE ResonantFilter(ModChannel &chn)
: channel{chn}
{
for(int i = 0; i < Traits::numChannelsIn; i++)
{
fy[i][0] = chn.nFilter_Y[i][0];
fy[i][1] = chn.nFilter_Y[i][1];
}
}
MPT_FORCEINLINE ~ResonantFilter(ModChannel &chn)
{
for(int i = 0; i < Traits::numChannelsIn; i++)
{
channel.nFilter_Y[i][0] = fy[i][0];
channel.nFilter_Y[i][1] = fy[i][1];
}
}
// Filter values are clipped to double the input range
#define ClipFilter(x) Clamp(x, static_cast<Traits::output_t>(-2.0f), static_cast<Traits::output_t>(2.0f))
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const ModChannel &chn)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
for(int i = 0; i < Traits::numChannelsIn; i++)
{
typename Traits::output_t val = outSample[i] * chn.nFilter_A0 + ClipFilter(fy[i][0]) * chn.nFilter_B0 + ClipFilter(fy[i][1]) * chn.nFilter_B1;
fy[i][1] = fy[i][0];
fy[i][0] = val - (outSample[i] * chn.nFilter_HP);
outSample[i] = val;
}
}
#undef ClipFilter
};
OPENMPT_NAMESPACE_END