818 lines
31 KiB
C
818 lines
31 KiB
C
////////////////////////////////////////////////////////////////////////////
|
|
// **** WAVPACK **** //
|
|
// Hybrid Lossless Wavefile Compressor //
|
|
// Copyright (c) 1998 - 2013 Conifer Software. //
|
|
// All Rights Reserved. //
|
|
// Distributed under the BSD Software License (see license.txt) //
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
// unpack.c
|
|
|
|
// This module actually handles the decompression of the audio data, except for
|
|
// the entropy decoding which is handled by the read_words.c module. For better
|
|
// efficiency, the conversion is isolated to tight loops that handle an entire
|
|
// buffer.
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "wavpack_local.h"
|
|
|
|
#ifdef OPT_ASM_X86
|
|
#define DECORR_STEREO_PASS_CONT unpack_decorr_stereo_pass_cont_x86
|
|
#define DECORR_STEREO_PASS_CONT_AVAILABLE unpack_cpu_has_feature_x86(CPU_FEATURE_MMX)
|
|
#define DECORR_MONO_PASS_CONT unpack_decorr_mono_pass_cont_x86
|
|
#elif defined(OPT_ASM_X64) && (defined (_WIN64) || defined(__CYGWIN__) || defined(__MINGW64__) || defined(__midipix__))
|
|
#define DECORR_STEREO_PASS_CONT unpack_decorr_stereo_pass_cont_x64win
|
|
#define DECORR_STEREO_PASS_CONT_AVAILABLE 1
|
|
#define DECORR_MONO_PASS_CONT unpack_decorr_mono_pass_cont_x64win
|
|
#elif defined(OPT_ASM_X64)
|
|
#define DECORR_STEREO_PASS_CONT unpack_decorr_stereo_pass_cont_x64
|
|
#define DECORR_STEREO_PASS_CONT_AVAILABLE 1
|
|
#define DECORR_MONO_PASS_CONT unpack_decorr_mono_pass_cont_x64
|
|
#elif defined(OPT_ASM_ARM)
|
|
#define DECORR_STEREO_PASS_CONT unpack_decorr_stereo_pass_cont_armv7
|
|
#define DECORR_STEREO_PASS_CONT_AVAILABLE 1
|
|
#define DECORR_MONO_PASS_CONT unpack_decorr_mono_pass_cont_armv7
|
|
#endif
|
|
|
|
#ifdef DECORR_STEREO_PASS_CONT
|
|
extern void DECORR_STEREO_PASS_CONT (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count, int32_t long_math);
|
|
extern void DECORR_MONO_PASS_CONT (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count, int32_t long_math);
|
|
#endif
|
|
|
|
// This flag provides the functionality of terminating the decoding and muting
|
|
// the output when a lossy sample appears to be corrupt. This is automatic
|
|
// for lossless files because a corrupt sample is unambigious, but for lossy
|
|
// data it might be possible for this to falsely trigger (although I have never
|
|
// seen it).
|
|
|
|
#define LOSSY_MUTE
|
|
|
|
///////////////////////////// executable code ////////////////////////////////
|
|
|
|
// This monster actually unpacks the WavPack bitstream(s) into the specified
|
|
// buffer as 32-bit integers or floats (depending on original data). Lossy
|
|
// samples will be clipped to their original limits (i.e. 8-bit samples are
|
|
// clipped to -128/+127) but are still returned in longs. It is up to the
|
|
// caller to potentially reformat this for the final output including any
|
|
// multichannel distribution, block alignment or endian compensation. The
|
|
// function unpack_init() must have been called and the entire WavPack block
|
|
// must still be visible (although wps->blockbuff will not be accessed again).
|
|
// For maximum clarity, the function is broken up into segments that handle
|
|
// various modes. This makes for a few extra infrequent flag checks, but
|
|
// makes the code easier to follow because the nesting does not become so
|
|
// deep. For maximum efficiency, the conversion is isolated to tight loops
|
|
// that handle an entire buffer. The function returns the total number of
|
|
// samples unpacked, which can be less than the number requested if an error
|
|
// occurs or the end of the block is reached.
|
|
|
|
static void decorr_stereo_pass (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count);
|
|
static void decorr_mono_pass (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count);
|
|
static void fixup_samples (WavpackContext *wpc, int32_t *buffer, uint32_t sample_count);
|
|
|
|
int32_t unpack_samples (WavpackContext *wpc, int32_t *buffer, uint32_t sample_count)
|
|
{
|
|
WavpackStream *wps = wpc->streams [wpc->current_stream];
|
|
uint32_t flags = wps->wphdr.flags, crc = wps->crc, i;
|
|
int32_t mute_limit = (1L << ((flags & MAG_MASK) >> MAG_LSB)) + 2;
|
|
int32_t correction [2], read_word, *bptr;
|
|
struct decorr_pass *dpp;
|
|
int tcount, m = 0;
|
|
|
|
// don't attempt to decode past the end of the block, but watch out for overflow!
|
|
|
|
if (wps->sample_index + sample_count > GET_BLOCK_INDEX (wps->wphdr) + wps->wphdr.block_samples &&
|
|
(uint32_t) (GET_BLOCK_INDEX (wps->wphdr) + wps->wphdr.block_samples - wps->sample_index) < sample_count)
|
|
sample_count = (uint32_t) (GET_BLOCK_INDEX (wps->wphdr) + wps->wphdr.block_samples - wps->sample_index);
|
|
|
|
if (GET_BLOCK_INDEX (wps->wphdr) > wps->sample_index || wps->wphdr.block_samples < sample_count)
|
|
wps->mute_error = TRUE;
|
|
|
|
if (wps->mute_error) {
|
|
if (wpc->reduced_channels == 1 || wpc->config.num_channels == 1 || (flags & MONO_FLAG))
|
|
memset (buffer, 0, sample_count * 4);
|
|
else
|
|
memset (buffer, 0, sample_count * 8);
|
|
|
|
wps->sample_index += sample_count;
|
|
return sample_count;
|
|
}
|
|
|
|
if ((flags & HYBRID_FLAG) && !wps->block2buff)
|
|
mute_limit = (mute_limit * 2) + 128;
|
|
|
|
//////////////// handle lossless or hybrid lossy mono data /////////////////
|
|
|
|
if (!wps->block2buff && (flags & MONO_DATA)) {
|
|
int32_t *eptr = buffer + sample_count;
|
|
|
|
if (flags & HYBRID_FLAG) {
|
|
i = sample_count;
|
|
|
|
for (bptr = buffer; bptr < eptr;)
|
|
if ((*bptr++ = get_word (wps, 0, NULL)) == WORD_EOF) {
|
|
i = (uint32_t)(bptr - buffer);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
i = get_words_lossless (wps, buffer, sample_count);
|
|
|
|
#ifdef DECORR_MONO_PASS_CONT
|
|
if (sample_count < 16)
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++)
|
|
decorr_mono_pass (dpp, buffer, sample_count);
|
|
else
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) {
|
|
int pre_samples = (dpp->term > MAX_TERM) ? 2 : dpp->term;
|
|
|
|
decorr_mono_pass (dpp, buffer, pre_samples);
|
|
|
|
DECORR_MONO_PASS_CONT (dpp, buffer + pre_samples, sample_count - pre_samples,
|
|
((flags & MAG_MASK) >> MAG_LSB) > 15);
|
|
}
|
|
#else
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++)
|
|
decorr_mono_pass (dpp, buffer, sample_count);
|
|
#endif
|
|
|
|
#ifndef LOSSY_MUTE
|
|
if (!(flags & HYBRID_FLAG))
|
|
#endif
|
|
for (bptr = buffer; bptr < eptr; ++bptr) {
|
|
if (labs (bptr [0]) > mute_limit) {
|
|
i = (uint32_t)(bptr - buffer);
|
|
break;
|
|
}
|
|
|
|
crc = crc * 3 + bptr [0];
|
|
}
|
|
#ifndef LOSSY_MUTE
|
|
else
|
|
for (bptr = buffer; bptr < eptr; ++bptr)
|
|
crc = crc * 3 + bptr [0];
|
|
#endif
|
|
}
|
|
|
|
/////////////// handle lossless or hybrid lossy stereo data ///////////////
|
|
|
|
else if (!wps->block2buff && !(flags & MONO_DATA)) {
|
|
int32_t *eptr = buffer + (sample_count * 2);
|
|
|
|
if (flags & HYBRID_FLAG) {
|
|
i = sample_count;
|
|
|
|
for (bptr = buffer; bptr < eptr; bptr += 2)
|
|
if ((bptr [0] = get_word (wps, 0, NULL)) == WORD_EOF ||
|
|
(bptr [1] = get_word (wps, 1, NULL)) == WORD_EOF) {
|
|
i = (uint32_t)(bptr - buffer) / 2;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
i = get_words_lossless (wps, buffer, sample_count);
|
|
|
|
#ifdef DECORR_STEREO_PASS_CONT
|
|
if (sample_count < 16 || !DECORR_STEREO_PASS_CONT_AVAILABLE) {
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++)
|
|
decorr_stereo_pass (dpp, buffer, sample_count);
|
|
|
|
m = sample_count & (MAX_TERM - 1);
|
|
}
|
|
else
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) {
|
|
int pre_samples = (dpp->term < 0 || dpp->term > MAX_TERM) ? 2 : dpp->term;
|
|
|
|
decorr_stereo_pass (dpp, buffer, pre_samples);
|
|
|
|
DECORR_STEREO_PASS_CONT (dpp, buffer + pre_samples * 2, sample_count - pre_samples,
|
|
((flags & MAG_MASK) >> MAG_LSB) >= 16);
|
|
}
|
|
#else
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++)
|
|
decorr_stereo_pass (dpp, buffer, sample_count);
|
|
|
|
m = sample_count & (MAX_TERM - 1);
|
|
#endif
|
|
|
|
if (flags & JOINT_STEREO)
|
|
for (bptr = buffer; bptr < eptr; bptr += 2) {
|
|
bptr [0] += (bptr [1] -= (bptr [0] >> 1));
|
|
crc += (crc << 3) + (bptr [0] << 1) + bptr [0] + bptr [1];
|
|
}
|
|
else
|
|
for (bptr = buffer; bptr < eptr; bptr += 2)
|
|
crc += (crc << 3) + (bptr [0] << 1) + bptr [0] + bptr [1];
|
|
|
|
#ifndef LOSSY_MUTE
|
|
if (!(flags & HYBRID_FLAG))
|
|
#endif
|
|
for (bptr = buffer; bptr < eptr; bptr += 16)
|
|
if (labs (bptr [0]) > mute_limit || labs (bptr [1]) > mute_limit) {
|
|
i = (uint32_t)(bptr - buffer) / 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/////////////////// handle hybrid lossless mono data ////////////////////
|
|
|
|
else if ((flags & HYBRID_FLAG) && (flags & MONO_DATA))
|
|
for (bptr = buffer, i = 0; i < sample_count; ++i) {
|
|
|
|
if ((read_word = get_word (wps, 0, correction)) == WORD_EOF)
|
|
break;
|
|
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) {
|
|
int32_t sam, temp;
|
|
int k;
|
|
|
|
if (dpp->term > MAX_TERM) {
|
|
if (dpp->term & 1)
|
|
sam = 2 * dpp->samples_A [0] - dpp->samples_A [1];
|
|
else
|
|
sam = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
|
|
|
|
dpp->samples_A [1] = dpp->samples_A [0];
|
|
k = 0;
|
|
}
|
|
else {
|
|
sam = dpp->samples_A [m];
|
|
k = (m + dpp->term) & (MAX_TERM - 1);
|
|
}
|
|
|
|
temp = apply_weight (dpp->weight_A, sam) + read_word;
|
|
update_weight (dpp->weight_A, dpp->delta, sam, read_word);
|
|
dpp->samples_A [k] = read_word = temp;
|
|
}
|
|
|
|
m = (m + 1) & (MAX_TERM - 1);
|
|
|
|
if (flags & HYBRID_SHAPE) {
|
|
int shaping_weight = (wps->dc.shaping_acc [0] += wps->dc.shaping_delta [0]) >> 16;
|
|
int32_t temp = -apply_weight (shaping_weight, wps->dc.error [0]);
|
|
|
|
if ((flags & NEW_SHAPING) && shaping_weight < 0 && temp) {
|
|
if (temp == wps->dc.error [0])
|
|
temp = (temp < 0) ? temp + 1 : temp - 1;
|
|
|
|
wps->dc.error [0] = temp - correction [0];
|
|
}
|
|
else
|
|
wps->dc.error [0] = -correction [0];
|
|
|
|
read_word += correction [0] - temp;
|
|
}
|
|
else
|
|
read_word += correction [0];
|
|
|
|
crc += (crc << 1) + read_word;
|
|
|
|
if (labs (read_word) > mute_limit)
|
|
break;
|
|
|
|
*bptr++ = read_word;
|
|
}
|
|
|
|
//////////////////// handle hybrid lossless stereo data ///////////////////
|
|
|
|
else if (wps->block2buff && !(flags & MONO_DATA))
|
|
for (bptr = buffer, i = 0; i < sample_count; ++i) {
|
|
int32_t left, right, left2, right2;
|
|
int32_t left_c = 0, right_c = 0;
|
|
|
|
if ((left = get_word (wps, 0, correction)) == WORD_EOF ||
|
|
(right = get_word (wps, 1, correction + 1)) == WORD_EOF)
|
|
break;
|
|
|
|
if (flags & CROSS_DECORR) {
|
|
left_c = left + correction [0];
|
|
right_c = right + correction [1];
|
|
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) {
|
|
int32_t sam_A, sam_B;
|
|
|
|
if (dpp->term > 0) {
|
|
if (dpp->term > MAX_TERM) {
|
|
if (dpp->term & 1) {
|
|
sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1];
|
|
sam_B = 2 * dpp->samples_B [0] - dpp->samples_B [1];
|
|
}
|
|
else {
|
|
sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
|
|
sam_B = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
|
|
}
|
|
}
|
|
else {
|
|
sam_A = dpp->samples_A [m];
|
|
sam_B = dpp->samples_B [m];
|
|
}
|
|
|
|
left_c += apply_weight (dpp->weight_A, sam_A);
|
|
right_c += apply_weight (dpp->weight_B, sam_B);
|
|
}
|
|
else if (dpp->term == -1) {
|
|
left_c += apply_weight (dpp->weight_A, dpp->samples_A [0]);
|
|
right_c += apply_weight (dpp->weight_B, left_c);
|
|
}
|
|
else {
|
|
right_c += apply_weight (dpp->weight_B, dpp->samples_B [0]);
|
|
|
|
if (dpp->term == -3)
|
|
left_c += apply_weight (dpp->weight_A, dpp->samples_A [0]);
|
|
else
|
|
left_c += apply_weight (dpp->weight_A, right_c);
|
|
}
|
|
}
|
|
|
|
if (flags & JOINT_STEREO)
|
|
left_c += (right_c -= (left_c >> 1));
|
|
}
|
|
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) {
|
|
int32_t sam_A, sam_B;
|
|
|
|
if (dpp->term > 0) {
|
|
int k;
|
|
|
|
if (dpp->term > MAX_TERM) {
|
|
if (dpp->term & 1) {
|
|
sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1];
|
|
sam_B = 2 * dpp->samples_B [0] - dpp->samples_B [1];
|
|
}
|
|
else {
|
|
sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
|
|
sam_B = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
|
|
}
|
|
|
|
dpp->samples_A [1] = dpp->samples_A [0];
|
|
dpp->samples_B [1] = dpp->samples_B [0];
|
|
k = 0;
|
|
}
|
|
else {
|
|
sam_A = dpp->samples_A [m];
|
|
sam_B = dpp->samples_B [m];
|
|
k = (m + dpp->term) & (MAX_TERM - 1);
|
|
}
|
|
|
|
left2 = apply_weight (dpp->weight_A, sam_A) + left;
|
|
right2 = apply_weight (dpp->weight_B, sam_B) + right;
|
|
|
|
update_weight (dpp->weight_A, dpp->delta, sam_A, left);
|
|
update_weight (dpp->weight_B, dpp->delta, sam_B, right);
|
|
|
|
dpp->samples_A [k] = left = left2;
|
|
dpp->samples_B [k] = right = right2;
|
|
}
|
|
else if (dpp->term == -1) {
|
|
left2 = left + apply_weight (dpp->weight_A, dpp->samples_A [0]);
|
|
update_weight_clip (dpp->weight_A, dpp->delta, dpp->samples_A [0], left);
|
|
left = left2;
|
|
right2 = right + apply_weight (dpp->weight_B, left2);
|
|
update_weight_clip (dpp->weight_B, dpp->delta, left2, right);
|
|
dpp->samples_A [0] = right = right2;
|
|
}
|
|
else {
|
|
right2 = right + apply_weight (dpp->weight_B, dpp->samples_B [0]);
|
|
update_weight_clip (dpp->weight_B, dpp->delta, dpp->samples_B [0], right);
|
|
right = right2;
|
|
|
|
if (dpp->term == -3) {
|
|
right2 = dpp->samples_A [0];
|
|
dpp->samples_A [0] = right;
|
|
}
|
|
|
|
left2 = left + apply_weight (dpp->weight_A, right2);
|
|
update_weight_clip (dpp->weight_A, dpp->delta, right2, left);
|
|
dpp->samples_B [0] = left = left2;
|
|
}
|
|
}
|
|
|
|
m = (m + 1) & (MAX_TERM - 1);
|
|
|
|
if (!(flags & CROSS_DECORR)) {
|
|
left_c = left + correction [0];
|
|
right_c = right + correction [1];
|
|
|
|
if (flags & JOINT_STEREO)
|
|
left_c += (right_c -= (left_c >> 1));
|
|
}
|
|
|
|
if (flags & JOINT_STEREO)
|
|
left += (right -= (left >> 1));
|
|
|
|
if (flags & HYBRID_SHAPE) {
|
|
int shaping_weight;
|
|
int32_t temp;
|
|
|
|
correction [0] = left_c - left;
|
|
shaping_weight = (wps->dc.shaping_acc [0] += wps->dc.shaping_delta [0]) >> 16;
|
|
temp = -apply_weight (shaping_weight, wps->dc.error [0]);
|
|
|
|
if ((flags & NEW_SHAPING) && shaping_weight < 0 && temp) {
|
|
if (temp == wps->dc.error [0])
|
|
temp = (temp < 0) ? temp + 1 : temp - 1;
|
|
|
|
wps->dc.error [0] = temp - correction [0];
|
|
}
|
|
else
|
|
wps->dc.error [0] = -correction [0];
|
|
|
|
left = left_c - temp;
|
|
correction [1] = right_c - right;
|
|
shaping_weight = (wps->dc.shaping_acc [1] += wps->dc.shaping_delta [1]) >> 16;
|
|
temp = -apply_weight (shaping_weight, wps->dc.error [1]);
|
|
|
|
if ((flags & NEW_SHAPING) && shaping_weight < 0 && temp) {
|
|
if (temp == wps->dc.error [1])
|
|
temp = (temp < 0) ? temp + 1 : temp - 1;
|
|
|
|
wps->dc.error [1] = temp - correction [1];
|
|
}
|
|
else
|
|
wps->dc.error [1] = -correction [1];
|
|
|
|
right = right_c - temp;
|
|
}
|
|
else {
|
|
left = left_c;
|
|
right = right_c;
|
|
}
|
|
|
|
if (labs (left) > mute_limit || labs (right) > mute_limit)
|
|
break;
|
|
|
|
crc += (crc << 3) + (left << 1) + left + right;
|
|
*bptr++ = left;
|
|
*bptr++ = right;
|
|
}
|
|
else
|
|
i = 0; /* this line can't execute, but suppresses compiler warning */
|
|
|
|
if (i != sample_count) {
|
|
memset (buffer, 0, sample_count * (flags & MONO_FLAG ? 4 : 8));
|
|
wps->mute_error = TRUE;
|
|
i = sample_count;
|
|
|
|
if (bs_is_open (&wps->wvxbits))
|
|
bs_close_read (&wps->wvxbits);
|
|
}
|
|
|
|
if (m)
|
|
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++)
|
|
if (dpp->term > 0 && dpp->term <= MAX_TERM) {
|
|
int32_t temp_A [MAX_TERM], temp_B [MAX_TERM];
|
|
int k;
|
|
|
|
memcpy (temp_A, dpp->samples_A, sizeof (dpp->samples_A));
|
|
memcpy (temp_B, dpp->samples_B, sizeof (dpp->samples_B));
|
|
|
|
for (k = 0; k < MAX_TERM; k++) {
|
|
dpp->samples_A [k] = temp_A [m];
|
|
dpp->samples_B [k] = temp_B [m];
|
|
m = (m + 1) & (MAX_TERM - 1);
|
|
}
|
|
}
|
|
|
|
fixup_samples (wpc, buffer, i);
|
|
|
|
if ((flags & FLOAT_DATA) && (wpc->open_flags & OPEN_NORMALIZE))
|
|
WavpackFloatNormalize (buffer, (flags & MONO_DATA) ? i : i * 2,
|
|
127 - wps->float_norm_exp + wpc->norm_offset);
|
|
|
|
if (flags & FALSE_STEREO) {
|
|
int32_t *dptr = buffer + i * 2;
|
|
int32_t *sptr = buffer + i;
|
|
int32_t c = i;
|
|
|
|
while (c--) {
|
|
*--dptr = *--sptr;
|
|
*--dptr = *sptr;
|
|
}
|
|
}
|
|
|
|
wps->sample_index += i;
|
|
wps->crc = crc;
|
|
|
|
return i;
|
|
}
|
|
|
|
// General function to perform mono decorrelation pass on specified buffer
|
|
// (although since this is the reverse function it might technically be called
|
|
// "correlation" instead). This version handles all sample resolutions and
|
|
// weight deltas. The dpp->samples_X[] data is returned normalized for term
|
|
// values 1-8.
|
|
|
|
static void decorr_mono_pass (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count)
|
|
{
|
|
int32_t delta = dpp->delta, weight_A = dpp->weight_A;
|
|
int32_t *bptr, *eptr = buffer + sample_count, sam_A;
|
|
int m, k;
|
|
|
|
switch (dpp->term) {
|
|
|
|
case 17:
|
|
for (bptr = buffer; bptr < eptr; bptr++) {
|
|
sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1];
|
|
dpp->samples_A [1] = dpp->samples_A [0];
|
|
dpp->samples_A [0] = apply_weight (weight_A, sam_A) + bptr [0];
|
|
update_weight (weight_A, delta, sam_A, bptr [0]);
|
|
bptr [0] = dpp->samples_A [0];
|
|
}
|
|
|
|
break;
|
|
|
|
case 18:
|
|
for (bptr = buffer; bptr < eptr; bptr++) {
|
|
sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
|
|
dpp->samples_A [1] = dpp->samples_A [0];
|
|
dpp->samples_A [0] = apply_weight (weight_A, sam_A) + bptr [0];
|
|
update_weight (weight_A, delta, sam_A, bptr [0]);
|
|
bptr [0] = dpp->samples_A [0];
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
for (m = 0, k = dpp->term & (MAX_TERM - 1), bptr = buffer; bptr < eptr; bptr++) {
|
|
sam_A = dpp->samples_A [m];
|
|
dpp->samples_A [k] = apply_weight (weight_A, sam_A) + bptr [0];
|
|
update_weight (weight_A, delta, sam_A, bptr [0]);
|
|
bptr [0] = dpp->samples_A [k];
|
|
m = (m + 1) & (MAX_TERM - 1);
|
|
k = (k + 1) & (MAX_TERM - 1);
|
|
}
|
|
|
|
if (m) {
|
|
int32_t temp_samples [MAX_TERM];
|
|
|
|
memcpy (temp_samples, dpp->samples_A, sizeof (dpp->samples_A));
|
|
|
|
for (k = 0; k < MAX_TERM; k++, m++)
|
|
dpp->samples_A [k] = temp_samples [m & (MAX_TERM - 1)];
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
dpp->weight_A = weight_A;
|
|
}
|
|
|
|
// General function to perform stereo decorrelation pass on specified buffer
|
|
// (although since this is the reverse function it might technically be called
|
|
// "correlation" instead). This version handles all sample resolutions and
|
|
// weight deltas. The dpp->samples_X[] data is *not* returned normalized for
|
|
// term values 1-8, so it should be normalized if it is going to be used to
|
|
// call this function again.
|
|
|
|
static void decorr_stereo_pass (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count)
|
|
{
|
|
int32_t *bptr, *eptr = buffer + (sample_count * 2);
|
|
int m, k;
|
|
|
|
switch (dpp->term) {
|
|
case 17:
|
|
for (bptr = buffer; bptr < eptr; bptr += 2) {
|
|
int32_t sam, tmp;
|
|
|
|
sam = 2 * dpp->samples_A [0] - dpp->samples_A [1];
|
|
dpp->samples_A [1] = dpp->samples_A [0];
|
|
bptr [0] = dpp->samples_A [0] = apply_weight (dpp->weight_A, sam) + (tmp = bptr [0]);
|
|
update_weight (dpp->weight_A, dpp->delta, sam, tmp);
|
|
|
|
sam = 2 * dpp->samples_B [0] - dpp->samples_B [1];
|
|
dpp->samples_B [1] = dpp->samples_B [0];
|
|
bptr [1] = dpp->samples_B [0] = apply_weight (dpp->weight_B, sam) + (tmp = bptr [1]);
|
|
update_weight (dpp->weight_B, dpp->delta, sam, tmp);
|
|
}
|
|
|
|
break;
|
|
|
|
case 18:
|
|
for (bptr = buffer; bptr < eptr; bptr += 2) {
|
|
int32_t sam, tmp;
|
|
|
|
sam = dpp->samples_A [0] + ((dpp->samples_A [0] - dpp->samples_A [1]) >> 1);
|
|
dpp->samples_A [1] = dpp->samples_A [0];
|
|
bptr [0] = dpp->samples_A [0] = apply_weight (dpp->weight_A, sam) + (tmp = bptr [0]);
|
|
update_weight (dpp->weight_A, dpp->delta, sam, tmp);
|
|
|
|
sam = dpp->samples_B [0] + ((dpp->samples_B [0] - dpp->samples_B [1]) >> 1);
|
|
dpp->samples_B [1] = dpp->samples_B [0];
|
|
bptr [1] = dpp->samples_B [0] = apply_weight (dpp->weight_B, sam) + (tmp = bptr [1]);
|
|
update_weight (dpp->weight_B, dpp->delta, sam, tmp);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
for (m = 0, k = dpp->term & (MAX_TERM - 1), bptr = buffer; bptr < eptr; bptr += 2) {
|
|
int32_t sam;
|
|
|
|
sam = dpp->samples_A [m];
|
|
dpp->samples_A [k] = apply_weight (dpp->weight_A, sam) + bptr [0];
|
|
update_weight (dpp->weight_A, dpp->delta, sam, bptr [0]);
|
|
bptr [0] = dpp->samples_A [k];
|
|
|
|
sam = dpp->samples_B [m];
|
|
dpp->samples_B [k] = apply_weight (dpp->weight_B, sam) + bptr [1];
|
|
update_weight (dpp->weight_B, dpp->delta, sam, bptr [1]);
|
|
bptr [1] = dpp->samples_B [k];
|
|
|
|
m = (m + 1) & (MAX_TERM - 1);
|
|
k = (k + 1) & (MAX_TERM - 1);
|
|
}
|
|
|
|
break;
|
|
|
|
case -1:
|
|
for (bptr = buffer; bptr < eptr; bptr += 2) {
|
|
int32_t sam;
|
|
|
|
sam = bptr [0] + apply_weight (dpp->weight_A, dpp->samples_A [0]);
|
|
update_weight_clip (dpp->weight_A, dpp->delta, dpp->samples_A [0], bptr [0]);
|
|
bptr [0] = sam;
|
|
dpp->samples_A [0] = bptr [1] + apply_weight (dpp->weight_B, sam);
|
|
update_weight_clip (dpp->weight_B, dpp->delta, sam, bptr [1]);
|
|
bptr [1] = dpp->samples_A [0];
|
|
}
|
|
|
|
break;
|
|
|
|
case -2:
|
|
for (bptr = buffer; bptr < eptr; bptr += 2) {
|
|
int32_t sam;
|
|
|
|
sam = bptr [1] + apply_weight (dpp->weight_B, dpp->samples_B [0]);
|
|
update_weight_clip (dpp->weight_B, dpp->delta, dpp->samples_B [0], bptr [1]);
|
|
bptr [1] = sam;
|
|
dpp->samples_B [0] = bptr [0] + apply_weight (dpp->weight_A, sam);
|
|
update_weight_clip (dpp->weight_A, dpp->delta, sam, bptr [0]);
|
|
bptr [0] = dpp->samples_B [0];
|
|
}
|
|
|
|
break;
|
|
|
|
case -3:
|
|
for (bptr = buffer; bptr < eptr; bptr += 2) {
|
|
int32_t sam_A, sam_B;
|
|
|
|
sam_A = bptr [0] + apply_weight (dpp->weight_A, dpp->samples_A [0]);
|
|
update_weight_clip (dpp->weight_A, dpp->delta, dpp->samples_A [0], bptr [0]);
|
|
sam_B = bptr [1] + apply_weight (dpp->weight_B, dpp->samples_B [0]);
|
|
update_weight_clip (dpp->weight_B, dpp->delta, dpp->samples_B [0], bptr [1]);
|
|
bptr [0] = dpp->samples_B [0] = sam_A;
|
|
bptr [1] = dpp->samples_A [0] = sam_B;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// This is a helper function for unpack_samples() that applies several final
|
|
// operations. First, if the data is 32-bit float data, then that conversion
|
|
// is done in the float.c module (whether lossy or lossless) and we return.
|
|
// Otherwise, if the extended integer data applies, then that operation is
|
|
// executed first. If the unpacked data is lossy (and not corrected) then
|
|
// it is clipped and shifted in a single operation. Otherwise, if it's
|
|
// lossless then the last step is to apply the final shift (if any).
|
|
|
|
static void fixup_samples (WavpackContext *wpc, int32_t *buffer, uint32_t sample_count)
|
|
{
|
|
WavpackStream *wps = wpc->streams [wpc->current_stream];
|
|
uint32_t flags = wps->wphdr.flags;
|
|
int lossy_flag = (flags & HYBRID_FLAG) && !wps->block2buff;
|
|
int shift = (flags & SHIFT_MASK) >> SHIFT_LSB;
|
|
|
|
if (flags & FLOAT_DATA) {
|
|
float_values (wps, buffer, (flags & MONO_DATA) ? sample_count : sample_count * 2);
|
|
return;
|
|
}
|
|
|
|
if (flags & INT32_DATA) {
|
|
uint32_t count = (flags & MONO_DATA) ? sample_count : sample_count * 2;
|
|
int sent_bits = wps->int32_sent_bits, zeros = wps->int32_zeros;
|
|
int ones = wps->int32_ones, dups = wps->int32_dups;
|
|
uint32_t data, mask = (1 << sent_bits) - 1;
|
|
int32_t *dptr = buffer;
|
|
|
|
if (bs_is_open (&wps->wvxbits)) {
|
|
uint32_t crc = wps->crc_x;
|
|
|
|
while (count--) {
|
|
// if (sent_bits) {
|
|
getbits (&data, sent_bits, &wps->wvxbits);
|
|
*dptr = (*dptr << sent_bits) | (data & mask);
|
|
// }
|
|
|
|
if (zeros)
|
|
*dptr <<= zeros;
|
|
else if (ones)
|
|
*dptr = ((*dptr + 1) << ones) - 1;
|
|
else if (dups)
|
|
*dptr = ((*dptr + (*dptr & 1)) << dups) - (*dptr & 1);
|
|
|
|
crc = crc * 9 + (*dptr & 0xffff) * 3 + ((*dptr >> 16) & 0xffff);
|
|
dptr++;
|
|
}
|
|
|
|
wps->crc_x = crc;
|
|
}
|
|
else if (!sent_bits && (zeros + ones + dups)) {
|
|
while (lossy_flag && (flags & BYTES_STORED) == 3 && shift < 8) {
|
|
if (zeros)
|
|
zeros--;
|
|
else if (ones)
|
|
ones--;
|
|
else if (dups)
|
|
dups--;
|
|
else
|
|
break;
|
|
|
|
shift++;
|
|
}
|
|
|
|
while (count--) {
|
|
if (zeros)
|
|
*dptr <<= zeros;
|
|
else if (ones)
|
|
*dptr = ((*dptr + 1) << ones) - 1;
|
|
else if (dups)
|
|
*dptr = ((*dptr + (*dptr & 1)) << dups) - (*dptr & 1);
|
|
|
|
dptr++;
|
|
}
|
|
}
|
|
else
|
|
shift += zeros + sent_bits + ones + dups;
|
|
}
|
|
|
|
if (lossy_flag) {
|
|
int32_t min_value, max_value, min_shifted, max_shifted;
|
|
|
|
switch (flags & BYTES_STORED) {
|
|
case 0:
|
|
min_shifted = (min_value = -128 >> shift) << shift;
|
|
max_shifted = (max_value = 127 >> shift) << shift;
|
|
break;
|
|
|
|
case 1:
|
|
min_shifted = (min_value = -32768 >> shift) << shift;
|
|
max_shifted = (max_value = 32767 >> shift) << shift;
|
|
break;
|
|
|
|
case 2:
|
|
min_shifted = (min_value = -8388608 >> shift) << shift;
|
|
max_shifted = (max_value = 8388607 >> shift) << shift;
|
|
break;
|
|
|
|
case 3: default: /* "default" suppresses compiler warning */
|
|
min_shifted = (min_value = (int32_t) 0x80000000 >> shift) << shift;
|
|
max_shifted = (max_value = (int32_t) 0x7fffffff >> shift) << shift;
|
|
break;
|
|
}
|
|
|
|
if (!(flags & MONO_DATA))
|
|
sample_count *= 2;
|
|
|
|
while (sample_count--) {
|
|
if (*buffer < min_value)
|
|
*buffer++ = min_shifted;
|
|
else if (*buffer > max_value)
|
|
*buffer++ = max_shifted;
|
|
else
|
|
*buffer++ <<= shift;
|
|
}
|
|
}
|
|
else if (shift) {
|
|
if (!(flags & MONO_DATA))
|
|
sample_count *= 2;
|
|
|
|
while (sample_count--)
|
|
*buffer++ <<= shift;
|
|
}
|
|
}
|
|
|
|
// This function checks the crc value(s) for an unpacked block, returning the
|
|
// number of actual crc errors detected for the block. The block must be
|
|
// completely unpacked before this test is valid. For losslessly unpacked
|
|
// blocks of float or extended integer data the extended crc is also checked.
|
|
// Note that WavPack's crc is not a CCITT approved polynomial algorithm, but
|
|
// is a much simpler method that is virtually as robust for real world data.
|
|
|
|
int check_crc_error (WavpackContext *wpc)
|
|
{
|
|
int result = 0, stream;
|
|
|
|
for (stream = 0; stream < wpc->num_streams; stream++) {
|
|
WavpackStream *wps = wpc->streams [stream];
|
|
|
|
if (wps->crc != wps->wphdr.crc)
|
|
++result;
|
|
else if (bs_is_open (&wps->wvxbits) && wps->crc_x != wps->crc_wvx)
|
|
++result;
|
|
}
|
|
|
|
return result;
|
|
}
|