cog/Frameworks/GME/vgmplay/chips/yam.c

3111 lines
95 KiB
C

/////////////////////////////////////////////////////////////////////////////
//
// yam - Emulates Yamaha SCSP and AICA
//
/////////////////////////////////////////////////////////////////////////////
#define EMU_COMPILE
#ifdef VGMPLAY_BIG_ENDIAN
#define EMU_BIG_ENDIAN
#else
#define EMU_LITTLE_ENDIAN
#endif
#ifndef EMU_COMPILE
#error "Hi I forgot to set EMU_COMPILE"
#endif
#include "yam.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#elif defined(HAVE_MPROTECT)
#include <unistd.h>
#include <sys/mman.h>
#include <errno.h>
#endif
#include <stdlib.h>
#include <math.h>
#ifndef _WIN32
#define __cdecl
#define __fastcall __attribute__((regparm(3)))
#endif
/* No dynarec for x86_64 yet */
#if defined(_WIN32) || defined(__i386__)
#define ENABLE_DYNAREC
#endif
#if defined(_WIN64) || defined(__amd64__)
#undef ENABLE_DYNAREC
#endif
// no 'conversion from _blah_ possible loss of data' warnings
#ifdef _MSC_VER
#pragma warning (disable: 4244)
#endif
/////////////////////////////////////////////////////////////////////////////
#define RENDERMAX (200)
#define RINGMAX (256) // should be nearest power of two that's at least one greater than RENDERMAX
/////////////////////////////////////////////////////////////////////////////
#define INT_ONE_SAMPLE (10)
#define INT_MIDI_OUTPUT (9)
#define INT_TIMER_C (8)
#define INT_TIMER_B (7)
#define INT_TIMER_A (6)
#define INT_CPU (5)
#define INT_DMA_END (4)
#define INT_MIDI_INPUT (3)
#define INT_RESERVED_2 (2)
#define INT_RESERVED_1 (1)
#define INT_EXTERNAL (0)
/////////////////////////////////////////////////////////////////////////////
//
// Static information
//
#define MAKELFOPHASEINC(x) (((uint64)(0x100000000)) / ((uint64)(x)))
static const uint32 lfophaseinctable[0x20] = {
MAKELFOPHASEINC(0x3FC00),MAKELFOPHASEINC(0x37C00),MAKELFOPHASEINC(0x2FC00),MAKELFOPHASEINC(0x27C00),
MAKELFOPHASEINC(0x1FC00),MAKELFOPHASEINC(0x1BC00),MAKELFOPHASEINC(0x17C00),MAKELFOPHASEINC(0x13C00),
MAKELFOPHASEINC(0x0FC00),MAKELFOPHASEINC(0x0BC00),MAKELFOPHASEINC(0x0DC00),MAKELFOPHASEINC(0x09C00),
MAKELFOPHASEINC(0x07C00),MAKELFOPHASEINC(0x06C00),MAKELFOPHASEINC(0x05C00),MAKELFOPHASEINC(0x04C00),
MAKELFOPHASEINC(0x03C00),MAKELFOPHASEINC(0x03400),MAKELFOPHASEINC(0x02C00),MAKELFOPHASEINC(0x02400),
MAKELFOPHASEINC(0x01C00),MAKELFOPHASEINC(0x01800),MAKELFOPHASEINC(0x01400),MAKELFOPHASEINC(0x01000),
MAKELFOPHASEINC(0x00C00),MAKELFOPHASEINC(0x00A00),MAKELFOPHASEINC(0x00800),MAKELFOPHASEINC(0x00600),
MAKELFOPHASEINC(0x00400),MAKELFOPHASEINC(0x00300),MAKELFOPHASEINC(0x00200),MAKELFOPHASEINC(0x00100)
};
static const uint8 envattackshift[0x3D][4] = {
/* 00-07 */ {4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},
/* 08-0F */ {4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},
/* 10-17 */ {4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},
/* 18-1F */ {4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},
/* 20-27 */ {4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},
/* 28-2F */ {4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},{4,4,4,4},
/* 30-37 */ {4,4,4,4},{3,4,4,4},{3,4,3,4},{3,3,3,4},{3,3,3,3},{2,3,3,3},{2,3,2,3},{2,2,2,3},
/* 38-3C */ {2,2,2,2},{1,2,2,2},{1,2,1,2},{1,1,1,2},{1,1,1,1}
};
static const uint8 envdecayvalue[0x3D][4] = {
/* 00-07 */ {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},
/* 08-0F */ {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},
/* 10-17 */ {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},
/* 18-1F */ {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},
/* 20-27 */ {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},
/* 28-2F */ {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},
/* 30-37 */ {1,1,1,1},{2,1,1,1},{2,1,2,1},{2,2,2,1},{2,2,2,2},{4,2,2,2},{4,2,4,2},{4,4,4,2},
/* 38-3C */ {4,4,4,4},{8,4,4,4},{8,4,8,4},{8,8,8,4},{8,8,8,8}
};
static const int adpcmscale[8] = {
0xE6, 0xE6, 0xE6, 0xE6, 0x133, 0x199, 0x200, 0x266
};
static const int adpcmdiff[8] = {
1, 3, 5, 7, 9, 11, 13, 15
};
static const sint32 qtable[32] = {
0x0E00,0x0E80,0x0F00,0x0F80,
0x1000,0x1080,0x1100,0x1180,
0x1200,0x1280,0x1300,0x1280,
0x1400,0x1480,0x1500,0x1580,
0x1600,0x1680,0x1700,0x1780,
0x1800,0x1880,0x1900,0x1980,
0x1A00,0x1A80,0x1B00,0x1B80,
0x1C00,0x1D00,0x1E00,0x1F00
};
static const uint8 pan_att_l[32] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
static const uint8 pan_att_r[32] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,32 };
static void convert_stereo_send_level(
uint8 sdl, uint8 pan,
uint8 *att_l, uint8 *att_r,
sint32 *lin_l, sint32 *lin_r
) {
uint8 al = 0, ar = 0;
sint32 ll = 0, lr = 0;
sdl &= 0xF;
if(sdl) {
pan &= 0x1F;
al = sdl ^ 0xF;
ar = sdl ^ 0xF;
al += pan_att_l[pan];
ar += pan_att_r[pan];
ll = 4 - (al & 1);
lr = 4 - (ar & 1);
al >>= 1; al += 2;
ar >>= 1; ar += 2;
if(al >= 16) { al = 0; ll = 0; }
if(ar >= 16) { ar = 0; lr = 0; }
}
*att_l = al;
*att_r = ar;
*lin_l = ll;
*lin_r = lr;
}
/////////////////////////////////////////////////////////////////////////////
sint32 EMU_CALL yam_init(void) {
return 0;
}
/////////////////////////////////////////////////////////////////////////////
/*
static int gfreq[201];
void yam_debugoutput(void) {
int i;
int t=0;
int u=0;
for(i=0;i<201;i++) {
printf("gfreq[%3d]=%d\n",i,gfreq[i]);
t += i*gfreq[i];
u += gfreq[i];
}
printf("avg = %d/%d\n",t,u);
}
*/
/////////////////////////////////////////////////////////////////////////////
//
// State information
//
#define YAMSTATE ((struct YAM_STATE*)(state))
#define LOOP_NONE (0)
#define LOOP_FORWARDS (1)
#define LOOP_BACKWARDS (2)
#define LOOP_BIDIRECTIONAL (3)
struct YAM_CHAN {
uint8 mute;
uint8 kyonb;
uint8 ssctl;
sint8 sampler_dir;
uint8 sampler_looptype;
sint32 sampler_invert; // bits 15-31 = invert sign bit, bits 0-14 = invert other bits
uint8 pcms;
uint32 sampleaddr;
sint32 loopstart;
sint32 loopend;
uint8 ar[4]; // amplitude envelope rate: attack, decay, sustain, release
uint8 dl;
uint8 krs;
uint8 link;
uint8 oct;
uint16 fns;
uint8 lfore;
uint8 lfof;
uint8 plfows;
uint8 plfos;
uint8 alfows;
uint8 alfos;
uint8 dspchan;
uint8 dsplevel;
uint8 disdl;
uint8 dipan;
uint8 tl;
uint8 voff;
uint8 lpoff;
uint8 q;
uint8 stwinh;
uint8 mdl;
uint8 mdxsl;
uint8 mdysl;
uint16 flv[5];
uint8 fr[4]; // filter envelope rate: attack, decay, sustain, release
uint16 envlevelmask[4]; // for EGHOLD, the first will be 0
uint16 envlevel;
uint16 lpflevel;
uint8 envstate;
uint8 lpfstate;
uint8 lp;
uint32 playpos;
uint32 frcphase;
uint32 lfophase;
sint32 samplebufcur; // these are 16-bit signed
sint32 samplebufnext; // these are 16-bit signed
sint32 lpp1;
sint32 lpp2;
sint32 adpcmstep;
sint32 adpcmstep_loopstart;
sint32 adpcmprev;
sint32 adpcmprev_loopstart;
uint8 adpcminloop;
};
struct MPRO {
uint8 c_0rrrrrrr; // CRA (up to 7 bits)
uint8 t_0rrrrrrr; // TRA
uint8 t_Twwwwwww; // !TWT, TWA
sint8 tablemask; // -1 if table
sint8 adrmask; // -1 if adreb=1
sint8 negb; // -1 if negb
uint8 __kisxzbon; // skip, interpolate, saturate, XSEL, ZERO, BSEL, NOFL, NXADR
uint8 m_wrAFyyYh; // MWT, MRD, ADRL, FRCL, YSEL, YRL, shift-left-by
uint8 i_00rrrrrr; // IRA
uint8 i_0T0wwwww; // !IWT, IWA
uint8 e_000Twwww; // !EWT, EWA
uint8 m_00aaaaaa; // MASA
};
static uint64 mpro_scsp_read(struct MPRO *mpro) {
uint64 value = 0;
value |= ((uint64)(mpro->t_0rrrrrrr )) << 56; // TRA
value |= ((uint64)(mpro->t_Twwwwwww ^ 0x80)) << 48; // !TWT, TWA
value |= ((uint64)(mpro->tablemask & 1)) << 31; // TABLE
value |= ((uint64)(mpro->adrmask & 1)) << 1; // ADREB
value |= ((uint64)(mpro->negb & 1)) << 18; // NEGB
{ uint64 sh = mpro->m_wrAFyyYh & 1;
if((mpro->__kisxzbon & 0x20) == 0) { sh ^= 3; }
value |= (sh << 20); // SHFT
}
value |= ((uint64)(mpro->__kisxzbon & 0x10)) << 43; // XSEL
value |= ((uint64)(mpro->__kisxzbon & 0x0C)) << 14; // ZERO, BSEL
value |= ((uint64)(mpro->__kisxzbon & 0x02)) << 6; // NOFL *** THIS IS JUST A GUESS ***
value |= ((uint64)(mpro->__kisxzbon & 0x01)) << 0; // NXADR
value |= ((uint64)(mpro->m_wrAFyyYh & 0xC0)) << 23; // MWT, MRD
value |= ((uint64)(mpro->m_wrAFyyYh & 0x32)) << 18; // ADRL, FRCL, YRL
value |= ((uint64)(mpro->m_wrAFyyYh & 0x0C)) << 43; // YSEL
value |= ((uint64)(mpro->i_00rrrrrr & 0x3F)) << 38; // IRA
value |= ((uint64)(mpro->i_0T0wwwww & 0x1F)) << 32; // IWA
value |= ((uint64)((mpro->i_0T0wwwww & 0x40) ^ 0x40)) << 31; // !IWT
value |= ((uint64)((mpro->e_000Twwww & 0x1F) ^ 0x10)) << 24; // !EWT, EWA
value |= ((uint64)(mpro->m_00aaaaaa & 0x1F)) << 2; // MASA (fewer bits on SCSP)
value |= ((uint64)(mpro->c_0rrrrrrr & 0x3F)) << 9; // CRA (SCSP exclusive)
return value;
}
static void mpro_scsp_write(struct MPRO *mpro, uint64 value) {
mpro->t_0rrrrrrr = ((value >> 56) & 0x7F); // TRA
mpro->t_Twwwwwww = ((value >> 48) ^ 0x80); // !TWT, TWA
mpro->tablemask = ((value >> 31) & 1) ? (-1) : (0); // TABLE
mpro->adrmask = ((value >> 1) & 1) ? (-1) : (0); // ADREB
mpro->negb = ((value >> 18) & 1) ? (-1) : (0); // NEGB
mpro->__kisxzbon = 0;
if(!value) { mpro->__kisxzbon |= 0x80; } // skip
if(((value >> 20) & 3) == 3) { mpro->__kisxzbon |= 0x40; } // interpolate
if(((value >> 21) & 1) == 0) { mpro->__kisxzbon |= 0x20; } // saturate
mpro->__kisxzbon |= (value >> 43) & 0x10; // XSEL
mpro->__kisxzbon |= (value >> 14) & 0x0C; // ZERO, BSEL
mpro->__kisxzbon |= (value >> 6) & 0x02; // NOFL *** THIS IS JUST A GUESS ***
mpro->__kisxzbon |= (value >> 0) & 1; // NXADR
mpro->m_wrAFyyYh = (value >> 23) & 0xC0; // MWT, MRD
mpro->m_wrAFyyYh |= (value >> 18) & 0x32; // ADRL, FRCL, YRL
mpro->m_wrAFyyYh |= (value >> 43) & 0x0C; // YSEL
mpro->m_wrAFyyYh |= ((value >> 20) & 1) ^ ((value >> 21) & 1); // shift left by
mpro->i_00rrrrrr = (value >> 38) & 0x3F; // IRA
mpro->i_0T0wwwww = (value >> 32) & 0x1F; // IWA
mpro->i_0T0wwwww |= ((value >> 31) & 0x40) ^ 0x40; // !IWT
mpro->e_000Twwww = ((value >> 24) & 0x1F) ^ 0x10; // !EWT, EWA
mpro->m_00aaaaaa = (value >> 2) & 0x1F; // MASA (fewer bits on SCSP)
mpro->c_0rrrrrrr = (value >> 9) & 0x3F; // CRA (SCSP exclusive)
}
static void mpro_aica_write(struct MPRO *mpro, uint64 value) {
mpro->t_0rrrrrrr = ((value >> 57) & 0x7F); // TRA
mpro->t_Twwwwwww = ((value >> 49) ^ 0x80); // !TWT, TWA
mpro->tablemask = ((value >> 31) & 1) ? (-1) : (0); // TABLE
mpro->adrmask = ((value >> 8) & 1) ? (-1) : (0); // ADREB
mpro->negb = ((value >> 18) & 1) ? (-1) : (0); // NEGB
mpro->__kisxzbon = 0;
if(!value) { mpro->__kisxzbon |= 0x80; } // skip
if(((value >> 20) & 3) == 3) { mpro->__kisxzbon |= 0x40; } // interpolate
if(((value >> 21) & 1) == 0) { mpro->__kisxzbon |= 0x20; } // saturate
mpro->__kisxzbon |= (value >> 43) & 0x10; // XSEL
mpro->__kisxzbon |= (value >> 14) & 0x0E; // ZERO, BSEL, NOFL
mpro->__kisxzbon |= (value >> 7) & 1; // NXADR
mpro->m_wrAFyyYh = (value >> 23) & 0xC0; // MWT, MRD
mpro->m_wrAFyyYh |= (value >> 18) & 0x32; // ADRL, FRCL, YRL
mpro->m_wrAFyyYh |= (value >> 43) & 0x0C; // YSEL
mpro->m_wrAFyyYh |= ((value >> 20) & 1) ^ ((value >> 21) & 1); // shift left by
mpro->i_00rrrrrr = (value >> 39) & 0x3F; // IRA
mpro->i_0T0wwwww = (value >> 33) & 0x1F; // IWA
mpro->i_0T0wwwww |= ((value >> 32) & 0x40) ^ 0x40; // !IWT
mpro->e_000Twwww = ((value >> 24) & 0x1F) ^ 0x10; // !EWT, EWA
mpro->m_00aaaaaa = (value >> 9) & 0x3F; // MASA
}
static uint64 mpro_aica_read(struct MPRO *mpro) {
uint64 value = 0;
value |= ((uint64)(mpro->t_0rrrrrrr )) << 57; // TRA
value |= ((uint64)(mpro->t_Twwwwwww ^ 0x80)) << 49; // !TWT, TWA
value |= ((uint64)(mpro->tablemask & 1)) << 31; // TABLE
value |= ((uint64)(mpro->adrmask & 1)) << 8; // ADREB
value |= ((uint64)(mpro->negb & 1)) << 18; // NEGB
{ uint64 sh = mpro->m_wrAFyyYh & 1;
if((mpro->__kisxzbon & 0x20) == 0) { sh ^= 3; }
value |= (sh << 20); // SHFT
}
value |= ((uint64)(mpro->__kisxzbon & 0x10)) << 43; // XSEL
value |= ((uint64)(mpro->__kisxzbon & 0x0E)) << 14; // ZERO, BSEL, NOFL
value |= ((uint64)(mpro->__kisxzbon & 0x01)) << 7; // NXADR
value |= ((uint64)(mpro->m_wrAFyyYh & 0xC0)) << 23; // MWT, MRD
value |= ((uint64)(mpro->m_wrAFyyYh & 0x32)) << 18; // ADRL, FRCL, YRL
value |= ((uint64)(mpro->m_wrAFyyYh & 0x0C)) << 43; // YSEL
value |= ((uint64)(mpro->i_00rrrrrr & 0x3F)) << 39; // IRA
value |= ((uint64)(mpro->i_0T0wwwww & 0x1F)) << 33; // IWA
value |= ((uint64)((mpro->i_0T0wwwww & 0x40) ^ 0x40)) << 32; // !IWT
value |= ((uint64)((mpro->e_000Twwww & 0x1F) ^ 0x10)) << 24; // !EWT, EWA
value |= ((uint64)(mpro->m_00aaaaaa & 0x3F)) << 9; // MASA
return value;
}
#define DYNACODE_MAX_SIZE (0x6000)
#define DYNACODE_SLOP_SIZE (0x80)
struct YAM_STATE {
//
// Misc.
//
uint32 version;
void *ram_ptr; // EXTERNALLY-REGISTERED pointer
uint32 ram_mask;
sint16 *out_buf; // EXTERNALLY-REGISTERED pointer
uint32 out_pending;
uint32 odometer;
uint8 dry_out_enabled;
uint8 dsp_emulation_enabled;
#ifdef ENABLE_DYNAREC
uint8 dsp_dyna_enabled;
uint8 dsp_dyna_valid;
#endif
uint32 randseed;
uint32 mem_word_address_xor;
uint32 mem_byte_address_xor;
//
// Common regs
//
uint8 efsdl[18];
uint8 efpan[18];
uint8 mono;
uint8 mvol;
uint32 rbp;
uint8 rbl;
uint8 afsel;
uint8 mslc;
uint8 mrwinh;
uint8 tctl[3], tim[3];
uint16 mcieb, mcipd;
uint16 scieb, scipd;
uint8 scilv0, scilv1, scilv2;
uint8 inton, intreq;
uint32 rtc;
//
// DSP regs
//
sint16 coef[128]; // stored as 13-bit
uint16 madrs[64];
struct MPRO mpro[128];
sint32 temp[128];
// INPUTS all pre-promoted to 24-bit
// 0x00-0x1F: MEMS
// 0x20-0x2F: MIXS
// 0x30-0x31: EXTS
// 0x32-0x3F: always zero
// 0x40-0x5F: slop area to handle IWTA
sint32 inputs[0x60];
// EFREG
// 0x00-0x0F: EFREG
// 0x10-0x1F: slop area to handle EWTA
sint16 efreg[0x20];
uint32 mdec_ct;
uint32 adrs_reg;
sint32 xzbchoice[5];
#define XZBCHOICE_TEMP (0)
#define XZBCHOICE_ACC (1)
#define XZBCHOICE_ZERO (2)
#define XZBCHOICE_ZERO_ACC (3)
#define XZBCHOICE_INPUTS (4)
sint32 yychoice[4];
#define YYCHOICE_FRC_REG (0)
#define YYCHOICE_COEF (1)
#define YYCHOICE_Y_REG_H (2)
#define YYCHOICE_Y_REG_L (3)
sint32 mem_in_data[4];
// SCSP modulation data
sint16 ringbuf[32*RINGMAX];
uint32 bufptr;
// DMA registers
uint32 dmea;
uint16 drga;
uint16 dtlg;
//
// Channel regs
//
struct YAM_CHAN chan[64];
//
// Buffer for dynarec code
//
#ifdef ENABLE_DYNAREC
uint8 dynacode[DYNACODE_MAX_SIZE];
#endif
};
//
// Get size
//
uint32 EMU_CALL yam_get_state_size(uint8 version) {
return sizeof(struct YAM_STATE);
}
//
// Initialize DSP state
//
void EMU_CALL yam_clear_state(void *state, uint8 version) {
int i;
if(version != 2) { version = 1; }
// Clear to zero
memset(state, 0, sizeof(struct YAM_STATE));
// Set version
YAMSTATE->version = version;
// Clear channel regs
for(i = 0; i < 64; i++) {
YAMSTATE->chan[i].envstate = 3;
YAMSTATE->chan[i].lpfstate = 3;
YAMSTATE->chan[i].envlevel = 0x1FFF;
YAMSTATE->chan[i].envlevelmask[0] = 0x1FFF;
YAMSTATE->chan[i].envlevelmask[1] = 0x1FFF;
YAMSTATE->chan[i].envlevelmask[2] = 0x1FFF;
YAMSTATE->chan[i].envlevelmask[3] = 0x1FFF;
YAMSTATE->chan[i].lpflevel = 0x1FFF;
// no lowpass on the SCSP
if(version == 1) { YAMSTATE->chan[i].lpoff = 1; }
}
// Initialize MPRO
for(i = 0; i < 128; i++) {
switch(version) {
case 1:
mpro_scsp_write((YAMSTATE->mpro) + i, 0);
break;
case 2:
YAMSTATE->mpro[i].c_0rrrrrrr = i;
mpro_aica_write((YAMSTATE->mpro) + i, 0);
break;
}
}
// Enable dry output
YAMSTATE->dry_out_enabled = 1;
// Enable DSP emulation by default
YAMSTATE->dsp_emulation_enabled = 1;
// Enable DSP dynarec
#ifdef ENABLE_DYNAREC
YAMSTATE->dsp_dyna_enabled = 1;
#endif
}
/////////////////////////////////////////////////////////////////////////////
//
// Ugly hack to log debug output
//
/*
FILE *logfile = NULL;
static void logf(const char *fmt, ...) {
va_list a;
va_start(a, fmt);
if(!logfile) {
logfile=fopen("C:\\Corlett\\yam.log","wb");
}
if(logfile) { vfprintf(logfile, fmt, a); fflush(logfile); }
}
static void logupdate(struct YAM_STATE *state) {
int i;
logf("log update\n");
// for(i=0;i<10;i++) {
// logf("mpro %d: %08X %08X\n",i,state->mpro32[2*i+0],state->mpro32[2*i+1]);
// }
for(i = 0; i < 64; i++) {
logf("chan %d: dsp %X level %X\n",i,state->chan[i].dspchan,state->chan[i].dsplevel);
}
for(i = 0; i < 16; i++) {
logf("efsdl %d: %X pan %X\n",i,state->efsdl[i],state->efpan[i]);
}
}
static void logstep(struct YAM_STATE *state, uint32 odometer) {
static uint32 lastodometer = 0;
if((odometer/50000) > (lastodometer/50000)) {
lastodometer = odometer;
logupdate(state);
}
}
static int st = 0;
static void dumpch(struct YAM_STATE *state, struct YAM_CHAN *chan) {
logf("st=%u (%us) envstate=%X level=%X\n",st,st/44100,chan->envstate,chan->envlevel);
logf(" playpos=%X ls=%X le=%X\n",chan->playpos,chan->loopstart,chan->loopend);
logf(" sample=%X tl=%X oct=%X fns=%X\n",chan->sampleaddr, chan->tl,chan->oct,chan->fns);
logf(" rbp=%X rbl=%X\n",state->rbp,state->rbl);
}
*/
/////////////////////////////////////////////////////////////////////////////
//
// Set RAM pointer and size (must be a power of 2)
//
void EMU_CALL yam_setram(void *state, uint32 *ram, uint32 size, uint8 mbx, uint8 mwx) {
YAMSTATE->ram_ptr = ram;
if((size & (size-1)) == 0) {
YAMSTATE->ram_mask = size-1;
} else {
YAMSTATE->ram_mask = 0;
}
YAMSTATE->mem_byte_address_xor = mbx;
YAMSTATE->mem_word_address_xor = mwx;
//
// Invalidate dynarec code
//
#ifdef ENABLE_DYNAREC
YAMSTATE->dsp_dyna_valid = 0;
#endif
}
/////////////////////////////////////////////////////////////////////////////
//
// Set output buffer pointer and begin new execution run
//
void EMU_CALL yam_beginbuffer(void *state, sint16 *buf) {
YAMSTATE->out_buf = buf;
YAMSTATE->out_pending = 0;
}
/////////////////////////////////////////////////////////////////////////////
//
// Enable or disable various things
//
void EMU_CALL yam_enable_dry(void *state, uint8 enable) {
YAMSTATE->dry_out_enabled = (enable != 0);
}
void EMU_CALL yam_enable_dsp(void *state, uint8 enable) {
YAMSTATE->dsp_emulation_enabled = (enable != 0);
#ifdef ENABLE_DYNAREC
if(enable == 0) { YAMSTATE->dsp_dyna_valid = 0; }
#endif
}
void EMU_CALL yam_enable_dsp_dynarec(void *state, uint8 enable) {
#ifdef ENABLE_DYNAREC
YAMSTATE->dsp_dyna_enabled = (enable != 0);
if(enable == 0) { YAMSTATE->dsp_dyna_valid = 0; }
#endif
}
/////////////////////////////////////////////////////////////////////////////
//
// Timers / interrupts
//
//
// Recompute intreq
//
static void sci_recompute(struct YAM_STATE *state) {
int i;
uint16 scipd = (state->scipd) & (state->scieb);
state->inton = 0;
for(i = 10; i >= 0; i--) {
if(((scipd) >> i) & 1) {
if(i > 7) i = 7;
state->intreq =
((((state->scilv0) >> i) & 1) << 0) |
((((state->scilv1) >> i) & 1) << 1) |
((((state->scilv2) >> i) & 1) << 2);
state->inton = state->intreq;
return;
}
}
}
//
// Signal an interrupt
//
static void sci_signal(struct YAM_STATE *state, int n) {
state->scipd |= (1 << n);
if(!(state->inton)) {
sci_recompute(state);
}
}
uint8* EMU_CALL yam_get_interrupt_pending_ptr(void *state) {
return &(YAMSTATE->inton);
}
//
// Determine how many samples until the next interrupt
//
uint32 EMU_CALL yam_get_min_samples_until_interrupt(void *state) {
uint32 min = 0xFFFFFFFF;
uint32 t, samples;
//return 1;
for(t = 0; t < 3; t++) {
if(YAMSTATE->scieb & (1 << (INT_TIMER_A + t))) {
samples = 0x100-((uint32)(YAMSTATE->tim[t]));
samples <<= YAMSTATE->tctl[t];
samples -= (YAMSTATE->odometer) & ((1<<YAMSTATE->tctl[t])-1);
if(samples < min) { min = samples; }
}
}
//printf("yam min: ta=%X %02X tb=%X %02X tc=%X %02X min=%u\n",YAMSTATE->tctl[0],YAMSTATE->tim[0],YAMSTATE->tctl[1],YAMSTATE->tim[1],YAMSTATE->tctl[2],YAMSTATE->tim[2],min);
// min should never be 1 if the above is correct
// if(min < 1) { min = 1; }
return min;
}
/////////////////////////////////////////////////////////////////////////////
//
// Advance timers and interrupts
//
void EMU_CALL yam_advance(void *state, uint32 samples) {
uint32 t;
//printf("yam_advance(%u)",samples);
for(t = 0; t < 3; t++) {
uint8 scale = YAMSTATE->tctl[t];
uint32 whole = YAMSTATE->tim[t];
uint32 frac = (YAMSTATE->odometer) & ((1<<scale)-1);
uint32 remain = ((0x100 - whole) << scale) - frac;
if(samples >= remain) { sci_signal(state, INT_TIMER_A + t); }
YAMSTATE->tim[t] = ((frac + samples + (whole << scale)) >> scale) & 0xFF;
}
YAMSTATE->out_pending += samples;
YAMSTATE->odometer += samples;
}
/////////////////////////////////////////////////////////////////////////////
//
// Key on/off
//
static void keyon(struct YAM_CHAN *chan) {
//printf("keyon %08X\n",chan);
// Ignore redundant key-ons
if(chan->envstate != 3) return;
chan->sampler_dir = 1;
chan->playpos = 0;
chan->envlevel = 0x280;
chan->lpflevel = chan->flv[0];
chan->envstate = 0;
chan->lpfstate = 0;
chan->adpcmstep = 0x7F;
chan->adpcmstep_loopstart = 0;
chan->adpcmprev = 0;
chan->adpcmprev_loopstart = 0;
chan->adpcminloop = 0;
chan->samplebufcur = 0;
chan->samplebufnext = 0;
//printf("keyon %08X passed\n",chan);
}
static void keyoff(struct YAM_CHAN *chan) {
chan->envstate = 3;
chan->lpfstate = 3;
}
/////////////////////////////////////////////////////////////////////////////
//
// Estimate play position for a channel
//
// These are ROUGH approximations, and will not be entirely accurate in the
// following conditions:
//
// - any pitch LFO is applied
// - bidirectional loop mode
// - weird values of loopstart or loopend
//
static uint32 calculate_playpos(
struct YAM_STATE *state,
struct YAM_CHAN *chan
) {
sint32 p, deltap, loopsize;
if(!(chan->sampler_dir)) return 0;
if(state->out_pending > 100) yam_flush(state);
loopsize = chan->loopend - chan->loopstart;
if(loopsize < 1) { loopsize = 1; }
{ uint32 oct = chan->oct^8;
uint32 fns = chan->fns^0x400;
uint32 base_phaseinc = fns << oct;
// weird ADPCM thing mentioned in official doc
if(chan->pcms == 2 && oct >= 0xA) { base_phaseinc <<= 1; }
deltap = base_phaseinc * ((uint32)(state->out_pending));
deltap &= 0x7FFFFFFF;
deltap >>= 18;
}
p = ((uint16)(chan->playpos));
switch(chan->sampler_looptype) {
case LOOP_NONE:
p += deltap;
if(p >= chan->loopend) p = 0;
break;
case LOOP_FORWARDS:
p += deltap;
if(p >= chan->loopstart) {
p -= chan->loopstart;
p %= loopsize;
p += chan->loopstart;
}
break;
case LOOP_BACKWARDS:
if(p >= chan->loopstart) {
p -= chan->loopstart;
p = loopsize - p;
p += chan->loopstart;
}
p += deltap;
if(p >= chan->loopstart) {
p -= chan->loopstart;
p %= loopsize;
p += chan->loopstart;
}
if(p >= chan->loopstart) {
p -= chan->loopstart;
p = loopsize - p;
p += chan->loopstart;
}
break;
case LOOP_BIDIRECTIONAL:
if(chan->sampler_dir < 0) {
p = chan->loopend + loopsize - (p - chan->loopstart);
}
p += deltap;
if(p >= chan->loopstart) {
p -= chan->loopstart;
p %= 2 * loopsize;
p += chan->loopstart;
}
if(p >= chan->loopend) {
p = chan->loopend - (p - chan->loopend);
}
break;
}
return p & 0xFFFF;
}
/////////////////////////////////////////////////////////////////////////////
//
// Channel registers
//
static uint32 chan_scsp_load_reg(struct YAM_STATE *state, uint8 ch, uint8 a) {
struct YAM_CHAN *chan = state->chan + (((uint32)ch) & 0x1F);
uint16 d = 0;
// don't really need a flush for loading chan regs
switch(a & 0x1E) {
case 0x00: // PlayControl
d = (((uint32)(chan->kyonb )) & 0x0001) << 11;
d |= (((uint32)(chan->sampler_invert )) & 0xC000) >> 5;
d |= (((uint32)(chan->ssctl )) & 0x0003) << 7;
d |= (((uint32)(chan->sampler_looptype)) & 0x0003) << 5;
d |= (((uint32)(chan->pcms )) & 0x0001) << 4;
d |= ((chan->sampleaddr) >> 16) & 0xF;
break;
case 0x02: // SampleAddrLow
d = chan->sampleaddr;
break;
case 0x04: // LoopStart
d = chan->loopstart;
break;
case 0x06: // LoopEnd
d = chan->loopend;
break;
case 0x08: // AmpEnv1
d = (((uint32)(chan->ar[2] )) & 0x001F) << 11;
d |= (((uint32)(chan->ar[1] )) & 0x001F) << 6;
d |= ((((uint32)(chan->envlevelmask[0])) & 1) ^ 1) << 5;
d |= (((uint32)(chan->ar[0] )) & 0x001F) << 0;
break;
case 0x0A: // AmpEnv2
d = (((uint32)(chan->link )) & 0x0001) << 14;
d |= (((uint32)(chan->krs )) & 0x000F) << 10;
d |= (((uint32)(chan->dl )) & 0x001F) << 5;
d |= (((uint32)(chan->ar[3] )) & 0x001F) << 0;
break;
case 0x0C: // TotalLevel
d = (((uint32)(chan->stwinh )) & 0x0001) << 9;
d |= (((uint32)(chan->voff )) & 0x0001) << 8;
d |= (((uint32)(chan->tl )) & 0x00FF) << 0;
break;
case 0x0E: // Modulation
d = (((uint32)(chan->mdl )) & 0x000F) << 12;
d |= (((uint32)(chan->mdxsl )) & 0x003F) << 6;
d |= (((uint32)(chan->mdysl )) & 0x003F) << 0;
break;
case 0x10: // SampleRatePitch
d = (((uint32)(chan->oct )) & 0x000F) << 11;
d |= (((uint32)(chan->fns )) & 0x07FF) << 0;
break;
case 0x12: // LFOControl
d = (((uint32)(chan->lfore )) & 0x0001) << 15;
d |= (((uint32)(chan->lfof )) & 0x001F) << 10;
d |= (((uint32)(chan->plfows )) & 0x0003) << 8;
d |= (((uint32)(chan->plfos )) & 0x0007) << 5;
d |= (((uint32)(chan->alfows )) & 0x0003) << 3;
d |= (((uint32)(chan->alfos )) & 0x0007) << 0;
break;
case 0x14: // DSPInputSelect
d = (((uint32)(chan->dspchan )) & 0x000F) << 3;
d |= (((uint32)(chan->dsplevel )) & 0x000E) >> 1;
break;
case 0x16: // SendLevels
d = (((uint32)(chan->disdl )) & 0x000E) << 12;
d |= (((uint32)(chan->dipan )) & 0x001F) << 8;
if(ch < 18) {
d |= (((uint32)(state->efsdl[ch])) & 0x0E) << 4;
d |= (((uint32)(state->efpan[ch])) & 0x1F) << 0;
}
break;
}
return d;
}
static void chan_scsp_store_reg(struct YAM_STATE *state, uint8 ch, uint8 a, uint32 d, uint32 mask) {
struct YAM_CHAN *chan;
a &= 0x1E;
if(a >= 0x18) return;
yam_flush(YAMSTATE);
chan = state->chan + (((uint32)ch) & 0x1F);
switch(a & 0x1E) {
case 0x00: // PlayControl
if(mask & 0x00FF) {
chan->sampleaddr &= 0xFFFF;
chan->sampleaddr |= (((uint32)d) & 0xF) << 16;
chan->pcms = (d >> 4) & 1;
chan->sampler_looptype = (d >> 5) & 3;
chan->ssctl &= 2;
chan->ssctl |= (d >> 7) & 1;
}
if(mask & 0xFF00) {
chan->ssctl &= 1;
chan->ssctl |= (d >> 7) & 2;
chan->sampler_invert = 0;
if(d & (1<< 9)) chan->sampler_invert |= 0x00007FFF;
if(d & (1<<10)) chan->sampler_invert |= 0xFFFF8000;
chan->kyonb = (d >> 11) & 1;
if(d & 0x1000) { // kyonex
int ch;
//for(ch=0;ch<32;ch++){printf("%d",state->chan[ch].envstate);}printf("\n");
for(ch = 0; ch < 32; ch++) {
if(state->chan[ch].kyonb) {
//printf("*");
keyon(state->chan + ch);
} else {
//printf(".");
keyoff(state->chan + ch);
}
}
//printf("\n");
//for(ch=0;ch<32;ch++){printf("%d",state->chan[ch].envstate);}printf("\n");
}
}
break;
case 0x02: // SampleAddrLow
chan->sampleaddr &= (0xFFFFF ^ mask);
chan->sampleaddr |= (d & mask);
break;
case 0x04: // LoopStart
chan->loopstart &= (0xFFFF ^ mask);
chan->loopstart |= (d & mask);
break;
case 0x06: // LoopEnd
chan->loopend &= (0xFFFF ^ mask);
chan->loopend |= (d & mask);
break;
case 0x08: // AmpEnv1
if(mask & 0x00FF) {
chan->ar[0] = d & 0x1F;
chan->envlevelmask[0] = (d & (1<<5)) ? 0x0000 : 0x1FFF;
// chan->envlevelmask[0] = 0x1FFF;
chan->ar[1] &= 0x1C;
chan->ar[1] |= (d >> 6) & 0x03;
}
if(mask & 0xFF00) {
chan->ar[1] &= 0x03;
chan->ar[1] |= (d >> 6) & 0x1C;
chan->ar[2] = (d >> 11) & 0x1F;
}
break;
case 0x0A: // AmpEnv2
if(mask & 0x00FF) {
chan->ar[3] = d & 0x1F;
chan->dl &= 0x18;
chan->dl |= (d >> 5) & 0x07;
}
if(mask & 0xFF00) {
chan->dl &= 0x07;
chan->dl |= (d >> 5) & 0x18;
chan->krs = (d >> 10) & 0xF;
chan->link = (d >> 14) & 1;
}
break;
case 0x0C: // TotalLevel
if(mask & 0x00FF) {
chan->tl = d & 0xFF;
}
if(mask & 0xFF00) {
chan->voff = (d >> 8) & 1;
chan->stwinh = (d >> 9) & 1;
}
break;
case 0x0E: // Modulation
if(mask & 0x00FF) {
chan->mdysl = d & 0x3F;
chan->mdxsl &= 0x3C;
chan->mdxsl |= (d >> 6) & 0x03;
}
if(mask & 0xFF00) {
chan->mdxsl &= 0x03;
chan->mdxsl |= (d >> 6) & 0x3C;
chan->mdl = (d >> 12) & 0xF;
}
break;
case 0x10: // SampleRatePitch
if(mask & 0x00FF) {
chan->fns &= 0x700;
chan->fns |= d & 0x0FF;
}
if(mask & 0xFF00) {
chan->fns &= 0x0FF;
chan->fns |= d & 0x700;
chan->oct = (d >> 11) & 0xF;
}
break;
case 0x12: // LFOControl
if(mask & 0x00FF) {
chan->alfos = d & 7;
chan->alfows = (d >> 3) & 3;
chan->plfos = (d >> 5) & 7;
}
if(mask & 0xFF00) {
chan->plfows = (d >> 8) & 3;
chan->lfof = (d >> 10) & 0x1F;
chan->lfore = (d >> 15) & 1;
}
break;
case 0x14: // DSPInputSelect
if(mask & 0x00FF) {
chan->dsplevel = (d << 1) & 0xE;
if(chan->dsplevel) chan->dsplevel |= 1;
chan->dspchan = (d >> 3) & 0xF;
}
break;
case 0x16: // SendLevels
if(mask & 0x00FF) {
if(ch < 18) {
state->efpan[ch] = d & 0x1F;
state->efsdl[ch] = (d >> 4) & 0xE;
if(state->efsdl[ch]) state->efsdl[ch] |= 1;
}
}
if(mask & 0xFF00) {
chan->dipan = (d >> 8) & 0x1F;
chan->disdl = (d >> 12) & 0xE;
if(chan->disdl) chan->disdl |= 1;
}
break;
}
}
static uint32 chan_aica_load_reg(struct YAM_STATE *state, uint8 ch, uint8 a) {
struct YAM_CHAN *chan = state->chan + (((uint32)ch) & 0x3F);
uint16 d = 0;
// don't really need a flush for loading chan regs
switch(a & 0x7C) {
case 0x00: // PlayControl
d = (((uint32)(chan->kyonb )) & 0x0001) << 14;
d |= (((uint32)(chan->ssctl )) & 0x0001) << 10;
d |= (((uint32)(chan->sampler_looptype)) & 0x0001) << 9;
d |= (((uint32)(chan->pcms )) & 0x0003) << 7;
d |= ((chan->sampleaddr) >> 16) & 0x7F;
break;
case 0x04: // SampleAddrLow
d = chan->sampleaddr;
break;
case 0x08: // LoopStart
d = chan->loopstart;
break;
case 0x0C: // LoopEnd
d = chan->loopend;
break;
case 0x10: // AmpEnv1
d = (((uint32)(chan->ar[2] )) & 0x001F) << 11;
d |= (((uint32)(chan->ar[1] )) & 0x001F) << 6;
d |= (((uint32)(chan->ar[0] )) & 0x001F) << 0;
break;
case 0x14: // AmpEnv2
d = (((uint32)(chan->link )) & 0x0001) << 14;
d |= (((uint32)(chan->krs )) & 0x000F) << 10;
d |= (((uint32)(chan->dl )) & 0x001F) << 5;
d |= (((uint32)(chan->ar[3] )) & 0x001F) << 0;
break;
case 0x18: // SampleRatePitch
d = (((uint32)(chan->oct )) & 0x000F) << 11;
d |= (((uint32)(chan->fns )) & 0x07FF) << 0;
break;
case 0x1C: // LFOControl
d = (((uint32)(chan->lfore )) & 0x0001) << 15;
d |= (((uint32)(chan->lfof )) & 0x001F) << 10;
d |= (((uint32)(chan->plfows )) & 0x0003) << 8;
d |= (((uint32)(chan->plfos )) & 0x0007) << 5;
d |= (((uint32)(chan->alfows )) & 0x0003) << 3;
d |= (((uint32)(chan->alfos )) & 0x0007) << 0;
break;
case 0x20: // DSPChannelSend
d = (((uint32)(chan->dsplevel )) & 0x000F) << 4;
d |= (((uint32)(chan->dspchan )) & 0x000F) << 0;
break;
case 0x24: // DirectPanVolSend
d = (((uint32)(chan->disdl )) & 0x000F) << 8;
d |= (((uint32)(chan->dipan )) & 0x001F) << 0;
break;
case 0x28: // LPF1Volume
d = (((uint32)(chan->tl )) & 0x00FF) << 8;
d |= (((uint32)(chan->voff )) & 0x0001) << 6;
d |= (((uint32)(chan->lpoff )) & 0x0001) << 5;
d |= (((uint32)(chan->q )) & 0x001F) << 0;
break;
case 0x2C: // LPF2
d = (chan->flv[0]) & 0x1FFF;
break;
case 0x30: // LPF3
d = (chan->flv[1]) & 0x1FFF;
break;
case 0x34: // LPF4
d = (chan->flv[2]) & 0x1FFF;
break;
case 0x38: // LPF5
d = (chan->flv[3]) & 0x1FFF;
break;
case 0x3C: // LPF6
d = (chan->flv[4]) & 0x1FFF;
break;
case 0x40: // LPF7
d = (((uint32)(chan->fr[0] )) & 0x001F) << 8;
d |= (((uint32)(chan->fr[1] )) & 0x001F) << 0;
break;
case 0x44: // LPF8
d = (((uint32)(chan->fr[2] )) & 0x001F) << 8;
d |= (((uint32)(chan->fr[3] )) & 0x001F) << 0;
break;
}
return d;
}
static void chan_aica_store_reg(struct YAM_STATE *state, uint8 ch, uint8 a, uint32 d, uint32 mask) {
struct YAM_CHAN *chan;
a &= 0x7C;
if(a >= 0x48) return;
yam_flush(YAMSTATE);
chan = state->chan + (((uint32)ch) & 0x3F);
switch(a) {
case 0x00: // PlayControl
if(mask & 0x00FF) {
chan->sampleaddr &= 0xFFFF;
chan->sampleaddr |= (((uint32)d) & 0x7F) << 16;
chan->pcms &= 2;
chan->pcms |= (d >> 7) & 1;
}
if(mask & 0xFF00) {
chan->pcms &= 1;
chan->pcms |= (d >> 7) & 2;
chan->sampler_looptype = (d >> 9) & 1;
chan->ssctl = (d >> 10) & 1;
chan->kyonb = (d >> 14) & 1;
if(d & 0x8000) { // kyonex
int ch;
for(ch = 0; ch < 64; ch++) {
if(state->chan[ch].kyonb) { keyon(state->chan + ch); }
else { keyoff(state->chan + ch); }
}
}
}
break;
case 0x04: // SampleAddrLow
chan->sampleaddr &= (0x7FFFFF ^ mask);
chan->sampleaddr |= (d & mask);
break;
case 0x08: // LoopStart
chan->loopstart &= (0xFFFF ^ mask);
chan->loopstart |= (d & mask);
break;
case 0x0C: // LoopEnd
chan->loopend &= (0xFFFF ^ mask);
chan->loopend |= (d & mask);
break;
case 0x10: // AmpEnv1
if(mask & 0x00FF) {
chan->ar[0] = d & 0x1F;
chan->ar[1] &= 0x1C;
chan->ar[1] |= (d >> 6) & 0x03;
}
if(mask & 0xFF00) {
chan->ar[1] &= 0x03;
chan->ar[1] |= (d >> 6) & 0x1C;
chan->ar[2] = (d >> 11) & 0x1F;
}
break;
case 0x14: // AmpEnv2
if(mask & 0x00FF) {
chan->ar[3] = d & 0x1F;
chan->dl &= 0x18;
chan->dl |= (d >> 5) & 0x07;
}
if(mask & 0xFF00) {
chan->dl &= 0x07;
chan->dl |= (d >> 5) & 0x18;
chan->krs = (d >> 10) & 0xF;
chan->link = (d >> 14) & 1;
}
break;
case 0x18: // SampleRatePitch
if(mask & 0x00FF) {
chan->fns &= 0x700;
chan->fns |= d & 0x0FF;
}
if(mask & 0xFF00) {
chan->fns &= 0x0FF;
chan->fns |= d & 0x700;
chan->oct = (d >> 11) & 0xF;
}
break;
case 0x1C: // LFOControl
if(mask & 0x00FF) {
chan->alfos = d & 7;
chan->alfows = (d >> 3) & 3;
chan->plfos = (d >> 5) & 7;
}
if(mask & 0xFF00) {
chan->plfows = (d >> 8) & 3;
chan->lfof = (d >> 10) & 0x1F;
chan->lfore = (d >> 15) & 1;
}
break;
case 0x20: // DSPChannelSend
if(mask & 0x00FF) {
chan->dspchan = d & 0xF;
chan->dsplevel = (d >> 4) & 0xF;
}
break;
case 0x24: // DirectPanVolSend
if(mask & 0x00FF) { chan->dipan = d & 0x1F; }
if(mask & 0xFF00) { chan->disdl = (d >> 8) & 0xF; }
break;
case 0x28: // LPF1Volume
if(mask & 0x00FF) {
chan->q = d & 0x1F;
chan->lpoff = (d >> 5) & 1;
chan->voff = (d >> 6) & 1;
}
if(mask & 0xFF00) {
chan->tl = (d >> 8) & 0xFF;
}
break;
case 0x2C: // LPF2
chan->flv[0] = (((chan->flv[0]) & (0xFFFF ^ mask)) | (d & mask)) & 0x1FFF;
break;
case 0x30: // LPF3
chan->flv[1] = (((chan->flv[1]) & (0xFFFF ^ mask)) | (d & mask)) & 0x1FFF;
break;
case 0x34: // LPF4
chan->flv[2] = (((chan->flv[2]) & (0xFFFF ^ mask)) | (d & mask)) & 0x1FFF;
break;
case 0x38: // LPF5
chan->flv[3] = (((chan->flv[3]) & (0xFFFF ^ mask)) | (d & mask)) & 0x1FFF;
break;
case 0x3C: // LPF6
chan->flv[4] = (((chan->flv[4]) & (0xFFFF ^ mask)) | (d & mask)) & 0x1FFF;
break;
case 0x40: // LPF7
if(mask & 0x00FF) { chan->fr[1] = (d >> 0) & 0x1F; }
if(mask & 0xFF00) { chan->fr[0] = (d >> 8) & 0x1F; }
break;
case 0x44: // LPF8
if(mask & 0x00FF) { chan->fr[3] = (d >> 0) & 0x1F; }
if(mask & 0xFF00) { chan->fr[2] = (d >> 8) & 0x1F; }
break;
}
}
/////////////////////////////////////////////////////////////////////////////
//
// DSP registers
//
static void coef_write(struct YAM_STATE *state, uint32 n, uint32 d, uint32 mask) {
sint16 old = state->coef[n];
yam_flush(state);
n &= 0x7F;
state->coef[n] <<= 3;
state->coef[n] &= ~mask;
state->coef[n] |= d & mask;
state->coef[n] = ((sint16)(state->coef[n])) >> 3;
#ifdef ENABLE_DYNAREC
if(old != state->coef[n]) { state->dsp_dyna_valid = 0; }
#endif
}
static void madrs_write(struct YAM_STATE *state, uint32 n, uint32 d, uint32 mask) {
uint16 old = state->madrs[n];
yam_flush(state);
n &= 0x3F;
state->madrs[n] &= ~mask;
state->madrs[n] |= d & mask;
#ifdef ENABLE_DYNAREC
if(old != state->madrs[n]) { state->dsp_dyna_valid = 0; }
#endif
}
static uint32 temp_read(struct YAM_STATE *state, uint32 n) {
yam_flush(state);
if((n & 1) == 0) { return ((state->temp[(n/2)&0x7F]) >> 0) & 0x00FF; }
else { return ((state->temp[(n/2)&0x7F]) >> 8) & 0xFFFF; }
}
static void temp_write(struct YAM_STATE *state, uint32 n, uint32 d, uint32 mask) {
yam_flush(state);
switch(n & 1) {
case 0: mask &= 0x00FF; break;
case 1: mask &= 0xFFFF; mask <<= 8; d <<= 8; break;
}
n /= 2; n &= 0x1F;
state->temp[n] &= ~mask;
state->temp[n] |= d & mask;
// redo sign extension
state->temp[n] <<= 8;
state->temp[n] >>= 8;
}
static uint32 mems_read(struct YAM_STATE *state, uint32 n) {
yam_flush(state);
if((n & 1) == 0) { return ((state->inputs[(n/2)&0x1F]) >> 0) & 0x00FF; }
else { return ((state->inputs[(n/2)&0x1F]) >> 8) & 0xFFFF; }
}
static void mems_write(struct YAM_STATE *state, uint32 n, uint32 d, uint32 mask) {
yam_flush(state);
switch(n & 1) {
case 0: mask &= 0x00FF; break;
case 1: mask &= 0xFFFF; mask <<= 8; d <<= 8; break;
}
n /= 2; n &= 0x1F;
state->inputs[n] &= ~mask;
state->inputs[n] |= d & mask;
// redo sign extension
state->inputs[n] <<= 8;
state->inputs[n] >>= 8;
}
static uint32 mixs_read(struct YAM_STATE *state, uint32 n) {
yam_flush(state);
// MIXS is pre-promoted to 24-bit here, so shift it right by 4
if((n & 1) == 0) { return ((state->inputs[0x20+((n/2)&0xF)]) >> 4) & 0x000F; }
else { return ((state->inputs[0x20+((n/2)&0xF)]) >> 8) & 0xFFFF; }
}
static uint32 efreg_read(struct YAM_STATE *state, uint32 n) {
yam_flush(state);
return ((uint32)(state->efreg[n & 0xF])) & 0xFFFF;
}
static void efreg_write(struct YAM_STATE *state, uint32 n, uint32 d, uint32 mask) {
yam_flush(state);
state->efreg[n & 0xF] &= ~mask;
state->efreg[n & 0xF] |= d & mask;
}
static uint32 exts_read(struct YAM_STATE *state, uint32 n) {
yam_flush(state);
return (state->inputs[0x30 + (n & 1)] >> 8) & 0xFFFF;
}
static void exts_write(struct YAM_STATE *state, uint32 n, uint32 d, uint32 mask) {
yam_flush(state);
state->inputs[0x30 + (n & 1)] >>= 8;
state->inputs[0x30 + (n & 1)] &= ~mask;
state->inputs[0x30 + (n & 1)] |= d & mask;
state->inputs[0x30 + (n & 1)] <<= 16;
state->inputs[0x30 + (n & 1)] >>= 8;
}
static uint32 dsp_scsp_load_reg(struct YAM_STATE *state, uint32 a) {
a &= 0xFFE;
if(a < 0x700) return 0;
if(a < 0x780) return state->coef[(a/2) & 0x3F] << 3;
if(a < 0x7C0) return state->madrs[(a/2) & 0x1F];
if(a < 0x800) return 0;
if(a < 0xC00) {
uint8 shift = ((a&6)^6) * 8;
uint32 index = ((a-0x800)/8)&0x7F;
return (mpro_scsp_read(state->mpro + index) >> shift) & 0xFFFF;
}
if(a < 0xE00) return temp_read(state, (a/2) & 0xFF);
if(a < 0xE80) return mems_read(state, (a/2) & 0x3F);
if(a < 0xEC0) return mixs_read(state, (a/2) & 0x1F);
if(a < 0xEE0) return efreg_read(state, (a/2) & 0xF);
if(a < 0xEE4) return exts_read(state, (a/2) & 1);
return 0;
}
static void dsp_scsp_store_reg(
struct YAM_STATE *state,
uint32 a, uint32 d, uint32 mask
) {
a &= 0xFFE;
if(a < 0x700) { return; }
if(a < 0x780) { coef_write(state, (a/2) & 0x3F, d, mask); return; }
if(a < 0x7C0) { madrs_write(state, (a/2) & 0x1F, d, mask); return; }
if(a < 0x800) { return; }
if(a < 0xC00) {
uint8 shift64 = ((a&6)^6) * 8;
uint32 index64 = ((a-0x800)/8)&0x7F;
uint64 mask64sh = ((uint64)(mask & 0xFFFF)) << shift64;
uint64 dm64sh = ((uint64)(d & mask & 0xFFFF)) << shift64;
uint64 oldvalue = mpro_scsp_read(state->mpro + index64);
uint64 newvalue = (oldvalue & (~mask64sh)) | dm64sh;
if(newvalue != oldvalue) {
yam_flush(state);
mpro_scsp_write(state->mpro + index64, newvalue);
#ifdef ENABLE_DYNAREC
state->dsp_dyna_valid = 0;
#endif
}
return;
}
if(a < 0xE00) { temp_write(state, (a/2) & 0xFF, d, mask); return; }
if(a < 0xE80) { mems_write(state, (a/2) & 0x3F, d, mask); return; }
// you can't write to MIXS, at least not meaningfully
if(a < 0xEC0) { return; }
if(a < 0xEE0) { efreg_write(state, (a/2) & 0xF, d, mask); return; }
if(a < 0xEE4) { exts_write(state, (a/2) & 1, d, mask); return; }
}
static uint32 dsp_aica_load_reg(struct YAM_STATE *state, uint32 a) {
a &= 0xFFFC;
if(a < 0x3000) return 0;
if(a < 0x3200) return state->coef[(a/4) & 0x7F] << 3;
if(a < 0x3300) return state->madrs[(a/4) & 0x3F];
if(a < 0x3400) return 0;
if(a < 0x3C00) {
uint8 shift64 = ((a&0xC)^0xC) * 4;
uint32 index64 = ((a-0x3400)/16)&0x7F;
return (mpro_aica_read(state->mpro + index64) >> shift64) & 0xFFFF;
}
if(a < 0x4000) return 0;
if(a < 0x4400) return temp_read(state, (a/4) & 0xFF);
if(a < 0x4500) return mems_read(state, (a/4) & 0x3F);
if(a < 0x4580) return mixs_read(state, (a/4) & 0x1F);
if(a < 0x45C0) return efreg_read(state, (a/4) & 0xF);
if(a < 0x45C8) return exts_read(state, (a/4) & 1);
return 0;
}
static void dsp_aica_store_reg(
struct YAM_STATE *state,
uint32 a, uint32 d, uint32 mask
) {
a &= 0xFFFC;
if(a < 0x3000) { return; }
if(a < 0x3200) { coef_write(state, (a/4) & 0x7F, d, mask); return; }
if(a < 0x3300) { madrs_write(state, (a/4) & 0x3F, d, mask); return; }
if(a < 0x3400) { return; }
if(a < 0x3C00) {
uint8 shift64 = ((a&0xC)^0xC) * 4;
uint32 index64 = ((a-0x3400)/16)&0x7F;
uint64 mask64sh = ((uint64)(mask & 0xFFFF)) << shift64;
uint64 dm64sh = ((uint64)(d & mask & 0xFFFF)) << shift64;
uint64 oldvalue = mpro_aica_read(state->mpro + index64);
uint64 newvalue = (oldvalue & (~mask64sh)) | dm64sh;
if(newvalue != oldvalue) {
yam_flush(state);
mpro_aica_write(state->mpro + index64, newvalue);
#ifdef ENABLE_DYNAREC
state->dsp_dyna_valid = 0;
#endif
}
return;
}
if(a < 0x4000) { return; }
if(a < 0x4400) { temp_write(state, (a/4) & 0xFF, d, mask); return; }
if(a < 0x4500) { mems_write(state, (a/4) & 0x3F, d, mask); return; }
// you can't write to MIXS, at least not meaningfully
if(a < 0x4580) { return; }
if(a < 0x45C0) { efreg_write(state, (a/4) & 0xF, d, mask); return; }
if(a < 0x45C8) { exts_write(state, (a/4) & 1, d, mask); return; }
}
/////////////////////////////////////////////////////////////////////////////
//
// Externally-accessible load/store register
//
uint32 EMU_CALL yam_scsp_load_reg(void *state, uint32 a, uint32 mask) {
uint32 d = 0;
a &= 0xFFE;
if(a < 0x400) return chan_scsp_load_reg(YAMSTATE, a>>5, a&0x1E) & mask;
if(a >= 0x700) return dsp_scsp_load_reg(YAMSTATE, a) & mask;
if(a >= 0x600) return YAMSTATE->ringbuf[(YAMSTATE->bufptr-64+(a-0x600)/2)&(32*RINGMAX-1)] & mask;
switch(a) {
case 0x400: d = 0x0010; break; // MasterVolume (actually returns the LSI version)
case 0x402: // RingBufferAddress
d = (((uint32)(YAMSTATE->rbl)) & 3) << 7;
d |= ((YAMSTATE->rbp >> 13) & 0x7F);
break;
case 0x404: d = (1<<11) | (1 << 8); break; // MIDIInput, unimplemented
case 0x406: d = 0; break; // MIDI output, unimplemented
case 0x408: // CallAddress (playpos in increments of 4K)
{ int c = (YAMSTATE->mslc) & 0x1F;
if(YAMSTATE->out_pending > 0) yam_flush(YAMSTATE);
d = calculate_playpos(YAMSTATE, YAMSTATE->chan + c);
d &= 0xF000; d >>= 5;
//
// might only be checking when envstate is release anyway?
//
// d |= (YAMSTATE->chan[c].envstate != 3) << 4;
//d |= 1<<3;
// d |= (YAMSTATE->chan[c].lp & 1) << 4;
// YAMSTATE->chan[c].lp = 0;
//
// here bit 3 seems to be set to 1 to indicate idle.
// what idle means, I haven't determined
//
//d|=1<<3;
//d|=(YAMSTATE->chan[c].sampler_dir!=0)<<4;
// d|=(YAMSTATE->chan[c].envlevel>=0x80)<<4;
// d|=((YAMSTATE->chan[c].envlevel)&0x3FF)>>5;
//if(YAMSTATE->chan[c].envstate >= 1) {
// d |= 1<<4;
// d|=(YAMSTATE->chan[c].envlevel>=0x100)<<3;
//}
// //d |= 1<<3;
// d |= (YAMSTATE->chan[c].envlevel >= 0x80) << 3;
//
// d |= (YAMSTATE->chan[c].sampler_dir!=0) << 3;
//d|=1<<3;
// if 1<<3 always set: missing notes
// if 1<<3 never set: notes get cut off early, but most are there
// if it's >=0x300: missing notes
// if it's >=0x3C0: missing notes
// if it's <0x300: notes get cut off early
// close but missing notes
// d |= (YAMSTATE->chan[c].envstate == 3) << 4;
// d |= (YAMSTATE->chan[c].envlevel >= 0x281) << 3;
// d |= 1<<4;
// d |= (YAMSTATE->chan[c].envlevel >= 0x281) << 3;
// d |= (YAMSTATE->chan[c].envstate != 3) << 3;
// d |= (YAMSTATE->chan[c].sampler_dir == 0) << 4;
//d |= ((YAMSTATE->chan[c].envlevel) & 0x1FFF) >> 3;
//d ^= 0x00; // few
//d ^= 0x67; // few (these bits have no effect)
//d ^= 0x7F; // many missing notes
//d ^= 1<<4; // few
//d ^= 1<<3; // few
//d ^= 3<<3; // many missing notes
// only updates when hardware bit 1<<4 is 1
// hardware bit 1<<3 means idle?
// ok but wrong
// d |= (((uint32)(YAMSTATE->chan[c].envstate)) & 3) << 5;
// d |= ((YAMSTATE->chan[c].envlevel) & 0x3FF) >> 5;
// d ^= 0x7F;
// { uint32 l = (YAMSTATE->chan[c].envlevel) & (YAMSTATE->chan[c].envlevelmask[YAMSTATE->chan[c].envstate & 3]);
// if(l>0x3BF)l=0x1FFF;
// if(YAMSTATE->chan[c].sampler_dir == 0) l=0x1FFF;
//d|=(l>=0x3C0)<<3;
//d|=(l>=0x3C0)<<4;
// d |= l >> 8;
// if(l>=0x3BF) d|=0<<3;
//d|=l>>5;
// }
//d^=0x1C;
// d |= ((YAMSTATE->chan[c].envlevel) & 0x1FFF) >> 8;
//{ uint32 es = ((uint32)(YAMSTATE->chan[c].envstate)) & 3;
// es = 0;
// if(YAMSTATE->chan[c].sampler_dir == 0) es = 3;
// d |= es << 3;
//}
//d ^= 0x18;
//d |= 0x00;
}
break;
case 0x412:
d = YAMSTATE->dmea & 0xFFFF;
break;
case 0x414:
d = (((uint32)(YAMSTATE->dmea)) & 0xF0000) >> 4;
d |= (((uint32)(YAMSTATE->drga)) & 0xFFE) << 0;
break;
case 0x416:
d = (((uint32)(YAMSTATE->dtlg)) & 0xFFE) << 0;
break;
case 0x418:
d = (((uint32)(YAMSTATE->tctl[0])) & 0x7) << 8;
d |= (((uint32)(YAMSTATE->tim[0])) & 0xFF) << 0;
break;
case 0x41A:
d = (((uint32)(YAMSTATE->tctl[1])) & 0x7) << 8;
d |= (((uint32)(YAMSTATE->tim[1])) & 0xFF) << 0;
break;
case 0x41C:
d = (((uint32)(YAMSTATE->tctl[2])) & 0x7) << 8;
d |= (((uint32)(YAMSTATE->tim[2])) & 0xFF) << 0;
break;
case 0x41E: d = YAMSTATE->scieb & 0x07FF; break;
case 0x420: d = YAMSTATE->scipd & 0x07FF; break;
case 0x424: d = YAMSTATE->scilv0 & 0xFF; break;
case 0x426: d = YAMSTATE->scilv1 & 0xFF; break;
case 0x428: d = YAMSTATE->scilv2 & 0xFF; break;
case 0x42A: d = YAMSTATE->mcieb & 0x07FF; break;
case 0x42C: d = YAMSTATE->mcipd & 0x07FF; break;
}
return d & mask;
}
void EMU_CALL yam_scsp_store_reg(void *state, uint32 a, uint32 d, uint32 mask, uint8 *breakcpu) {
a &= 0xFFE;
d &= 0xFFFF & mask;
mask &= 0xFFFF;
if(a < 0x400) { chan_scsp_store_reg(YAMSTATE, a>>5, a&0x1E, d, mask); return; }
if(a >= 0x700) { dsp_scsp_store_reg(YAMSTATE, a, d, mask); return; }
if(a >= 0x600) { uint32 offset = (YAMSTATE->bufptr-64+(a-0x600)/2)&(32*RINGMAX-1); YAMSTATE->ringbuf[offset] = (d & mask) | (YAMSTATE->ringbuf[offset] & ~mask); return; }
switch(a) {
case 0x400: // MasterVolume
yam_flush(YAMSTATE);
if(mask & 0x00FF) {
YAMSTATE->mvol = d & 0xF;
}
break;
case 0x402: // RingBufferAddress
{ uint32 oldrbp = YAMSTATE->rbp;
uint8 oldrbl = YAMSTATE->rbl;
if(mask & 0x00FF) {
YAMSTATE->rbp = (((uint32)d) & 0x7F) << 13;
YAMSTATE->rbl &= 2;
YAMSTATE->rbl |= (d >> 7) & 1;
}
if(mask & 0xFF00) {
YAMSTATE->rbl &= 1;
YAMSTATE->rbl |= (d >> 7) & 2;
}
if((oldrbp != YAMSTATE->rbp) || (oldrbl != YAMSTATE->rbl)) {
uint32 newrbp = YAMSTATE->rbp;
uint8 newrbl = YAMSTATE->rbl;
YAMSTATE->rbp = oldrbp;
YAMSTATE->rbl = oldrbl;
yam_flush(YAMSTATE);
#ifdef ENABLE_DYNAREC
YAMSTATE->dsp_dyna_valid = 0;
#endif
YAMSTATE->rbp = newrbp;
YAMSTATE->rbl = newrbl;
}
}
break;
case 0x408: // ChnInfoReq
if(mask & 0xFF00) {
YAMSTATE->mslc = (d >> 11) & 0x1F;
}
break;
case 0x412: // DMA
if(mask & 0x00FF) { YAMSTATE->dmea = (YAMSTATE->dmea & 0xFFF00) | (d & 0xFF); }
if(mask & 0xFF00) { YAMSTATE->dmea = (YAMSTATE->dmea & 0xF00FF) | (d & 0xFF00); }
break;
case 0x414:
if(mask & 0xFF) { YAMSTATE->drga = (YAMSTATE->drga & 0xF00) | (d & 0xFE); }
if(mask & 0xFF00) { YAMSTATE->drga = (YAMSTATE->drga & 0x0FF) | (d & 0xF00); YAMSTATE->dmea = (YAMSTATE->dmea & 0xFFFF) | ((d & 0xF000) << 4); }
break;
case 0x416:
if(mask & 0xFF) { YAMSTATE->dtlg = (YAMSTATE->dtlg & 0xF00) | (d & 0xFE); }
if(mask & 0xFF00) { YAMSTATE->dtlg = (YAMSTATE->dtlg & 0xFF) | (d & 0xF00); }
break;
case 0x418: // TimerAControl
if(mask & 0x00FF) { YAMSTATE->tim[0] = d & 0xFF; }
if(mask & 0xFF00) { YAMSTATE->tctl[0] = (d >> 8) & 7; }
if(breakcpu) *breakcpu = 1;
break;
case 0x41A: // TimerBControl
if(mask & 0x00FF) { YAMSTATE->tim[1] = d & 0xFF; }
if(mask & 0xFF00) { YAMSTATE->tctl[1] = (d >> 8) & 7; }
if(breakcpu) *breakcpu = 1;
break;
case 0x41C: // TimerCControl
if(mask & 0x00FF) { YAMSTATE->tim[2] = d & 0xFF; }
if(mask & 0xFF00) { YAMSTATE->tctl[2] = (d >> 8) & 7; }
if(breakcpu) *breakcpu = 1;
break;
case 0x41E: // SCIEB
YAMSTATE->scieb = (((YAMSTATE->scieb) & (~mask)) | (d & mask)) & 0x7FF;
if(breakcpu) *breakcpu = 1;
break;
case 0x420: // SCIPD
YAMSTATE->scipd = (((YAMSTATE->scipd) & (~mask)) | (d & mask)) & 0x7FF;
if(breakcpu) *breakcpu = 1;
break;
case 0x422: // SCIRE
YAMSTATE->scipd &= ~(d & mask);
// I guess this is how we acknowledge interrupts now
sci_recompute(YAMSTATE);
if(breakcpu) *breakcpu = 1;
break;
case 0x424: // SCILV0
if(mask & 0x00FF) { YAMSTATE->scilv0 = d; }
break;
case 0x426: // SCILV1
if(mask & 0x00FF) { YAMSTATE->scilv1 = d; }
break;
case 0x428: // SCILV2
if(mask & 0x00FF) { YAMSTATE->scilv2 = d; }
break;
case 0x42A: // MCIEB
YAMSTATE->mcieb = (((YAMSTATE->mcieb) & (~mask)) | (d & mask)) & 0x7FF;
break;
case 0x42C: // MCIPD
YAMSTATE->mcipd = (((YAMSTATE->mcipd) & (~mask)) | (d & mask)) & 0x7FF;
break;
case 0x42E: // MCIRE
YAMSTATE->mcipd &= ~(d & mask);
break;
}
}
uint32 EMU_CALL yam_aica_load_reg(void *state, uint32 a, uint32 mask) {
uint32 d = 0;
a &= 0xFFFC;
if(a < 0x2000) return chan_aica_load_reg(YAMSTATE, a>>7, a&0x7C) & mask;
if(a >= 0x3000) return dsp_aica_load_reg(YAMSTATE, a) & mask;
if(a < 0x2048) {
d =
((((uint32)(YAMSTATE->efsdl[(a - 0x2000) / 4])) & 0x0F) << 8) |
((((uint32)(YAMSTATE->efpan[(a - 0x2000) / 4])) & 0x1F) << 0);
return d & mask;
}
switch(a) {
case 0x2800: d = 0x0010; break; // MasterVolume (actually returns the LSI version)
case 0x2804: // RingBufferAddress
d = (((uint32)(YAMSTATE->rbl)) & 3) << 13;
d |= ((YAMSTATE->rbp >> 11) & 0xFFF);
break;
case 0x2808: d = (1<<11) | (1 << 8); break; // MIDIInput, unimplemented
case 0x280C: d = 0; break; // ChnInfoReq, always seems to return 0 when read
case 0x2810: // PlayStatus
// if(YAMSTATE->out_pending > 100) yam_flush(YAMSTATE);
if(YAMSTATE->out_pending > 0) yam_flush(YAMSTATE);
{ int c = (YAMSTATE->mslc) & 0x3F;
d = (((uint32)(YAMSTATE->chan[c].lp )) & 1) << 15;
if(YAMSTATE->afsel == 0) {
d |= (((uint32)(YAMSTATE->chan[c].envstate)) & 3) << 13;
d |= (YAMSTATE->chan[c].envlevel) & 0x1FFF;
} else {
d |= (((uint32)(YAMSTATE->chan[c].lpfstate)) & 3) << 13;
d |= (YAMSTATE->chan[c].lpflevel) & 0x1FFF;
}
}
break;
case 0x2814: d = calculate_playpos(YAMSTATE, YAMSTATE->chan + ((YAMSTATE->mslc) & 0x3F)); break;
case 0x2880: d = YAMSTATE->mrwinh & 0xF; break;
case 0x2884: d = 0; break;
case 0x2888: d = 0; break;
case 0x288C: d = 0; break;
case 0x2890:
d = (((uint32)(YAMSTATE->tctl[0])) & 0x7) << 8;
d |= (((uint32)(YAMSTATE->tim[0])) & 0xFF) << 0;
break;
case 0x2894:
d = (((uint32)(YAMSTATE->tctl[1])) & 0x7) << 8;
d |= (((uint32)(YAMSTATE->tim[1])) & 0xFF) << 0;
break;
case 0x2898:
d = (((uint32)(YAMSTATE->tctl[2])) & 0x7) << 8;
d |= (((uint32)(YAMSTATE->tim[2])) & 0xFF) << 0;
break;
case 0x289C: d = YAMSTATE->scieb & 0x07FF; break;
case 0x28A0: d = YAMSTATE->scipd & 0x07FF; break;
case 0x28A4: d = 0; break;
case 0x28A8: d = YAMSTATE->scilv0 & 0xFF; break;
case 0x28AC: d = YAMSTATE->scilv1 & 0xFF; break;
case 0x28B0: d = YAMSTATE->scilv2 & 0xFF; break;
case 0x28B4: d = YAMSTATE->mcieb & 0x07FF; break;
case 0x28B8: d = YAMSTATE->mcipd & 0x07FF; break;
case 0x28BC: d = 0; break;
case 0x2C00: d = 0; break;
case 0x2D00: d = YAMSTATE->intreq & 7; break;
case 0x2D04: d = 0; break;
case 0x2E00: d = YAMSTATE->rtc >> 16; break;
case 0x2E04: d = YAMSTATE->rtc; break;
}
return d & mask;
}
void EMU_CALL yam_aica_store_reg(void *state, uint32 a, uint32 d, uint32 mask, uint8 *breakcpu) {
a &= 0xFFFC;
d &= 0xFFFF & mask;
if(a < 0x2000) { chan_aica_store_reg(YAMSTATE, a>>7, a&0x7C, d, mask); return; }
if(a >= 0x3000) { dsp_aica_store_reg(YAMSTATE, a, d, mask); return; }
if(a < 0x2048) {
if(mask & 0x00FF) { YAMSTATE->efpan[(a - 0x2000) / 4] = d & 0x1F; }
if(mask & 0xFF00) { YAMSTATE->efsdl[(a - 0x2000) / 4] = (d >> 8) & 0x0F; }
return;
}
switch(a) {
case 0x2800: // MasterVolume
yam_flush(YAMSTATE);
if(mask & 0x00FF) {
YAMSTATE->mvol = d & 0xF;
}
if(mask & 0xFF00) {
YAMSTATE->mono = (d >> 15) & 1;
}
break;
case 0x2804: // RingBufferAddress
{ uint32 oldrbp = YAMSTATE->rbp;
uint8 oldrbl = YAMSTATE->rbl;
if(mask & 0x00FF) {
YAMSTATE->rbp >>= 11;
YAMSTATE->rbp &= 0xF00;
YAMSTATE->rbp |= d & 0x0FF;
YAMSTATE->rbp <<= 11;
}
if(mask & 0xFF00) {
YAMSTATE->rbp >>= 11;
YAMSTATE->rbp &= 0x0FF;
YAMSTATE->rbp |= d & 0xF00;
YAMSTATE->rbp <<= 11;
YAMSTATE->rbl = (d >> 13) & 3;
}
if((oldrbp != YAMSTATE->rbp) || (oldrbl != YAMSTATE->rbl)) {
uint32 newrbp = YAMSTATE->rbp;
uint8 newrbl = YAMSTATE->rbl;
YAMSTATE->rbp = oldrbp;
YAMSTATE->rbl = oldrbl;
yam_flush(YAMSTATE);
#ifdef ENABLE_DYNAREC
YAMSTATE->dsp_dyna_valid = 0;
#endif
YAMSTATE->rbp = newrbp;
YAMSTATE->rbl = newrbl;
}
}
break;
case 0x2808: // MIDIInput, unimplemented
break;
case 0x280C: // ChnInfoReq
if(mask & 0x00FF) {
// MIDI output buffer, unimplemented
}
if(mask & 0xFF00) {
YAMSTATE->mslc = (d >> 8) & 0x3F;
YAMSTATE->afsel = (d >> 14) & 1;
}
break;
case 0x2810: break; // PlayStatus - writing probably has no effect.
case 0x2814: break; // PlayPos - writing probably has no effect.
case 0x2880: // misc.
if(mask & 0x00FF) {
YAMSTATE->mrwinh = d & 0xF;
}
break;
case 0x2884: break; // misc.
case 0x2888: break; // misc.
case 0x288C: break; // misc.
case 0x2890: // TimerAControl
if(mask & 0x00FF) { YAMSTATE->tim[0] = d & 0xFF; }
if(mask & 0xFF00) { YAMSTATE->tctl[0] = (d >> 8) & 7; }
if(breakcpu) *breakcpu = 1;
break;
case 0x2894: // TimerBControl
if(mask & 0x00FF) { YAMSTATE->tim[1] = d & 0xFF; }
if(mask & 0xFF00) { YAMSTATE->tctl[1] = (d >> 8) & 7; }
if(breakcpu) *breakcpu = 1;
break;
case 0x2898: // TimerCControl
if(mask & 0x00FF) { YAMSTATE->tim[2] = d & 0xFF; }
if(mask & 0xFF00) { YAMSTATE->tctl[2] = (d >> 8) & 7; }
if(breakcpu) *breakcpu = 1;
break;
case 0x289C: // SCIEB
YAMSTATE->scieb = (((YAMSTATE->scieb) & (~mask)) | (d & mask)) & 0x7FF;
if(breakcpu) *breakcpu = 1;
break;
case 0x28A0: // SCIPD
YAMSTATE->scipd = (((YAMSTATE->scipd) & (~mask)) | (d & mask)) & 0x7FF;
if(breakcpu) *breakcpu = 1;
break;
case 0x28A4: // SCIRE
YAMSTATE->scipd &= ~(d & mask);
if(breakcpu) *breakcpu = 1;
break;
case 0x28A8: // SCILV0
if(mask & 0x00FF) { YAMSTATE->scilv0 = d; }
break;
case 0x28AC: // SCILV1
if(mask & 0x00FF) { YAMSTATE->scilv1 = d; }
break;
case 0x28B0: // SCILV2
if(mask & 0x00FF) { YAMSTATE->scilv2 = d; }
break;
case 0x28B4: // MCIEB
YAMSTATE->mcieb = (((YAMSTATE->mcieb) & (~mask)) | (d & mask)) & 0x7FF;
break;
case 0x28B8: // MCIPD
YAMSTATE->mcipd = (((YAMSTATE->mcipd) & (~mask)) | (d & mask)) & 0x7FF;
break;
case 0x28BC: // MCIRE
YAMSTATE->mcipd &= ~(d & mask);
break;
case 0x2C00: // ARMReset
break;
case 0x2D00: // INTRequest
break;
case 0x2D04: // INTClear
// running through the recompute will clear the previous interrupt
// as well as enabling the next one, if there is a next one
sci_recompute(YAMSTATE);
if(breakcpu) *breakcpu = 1;
break;
case 0x2E00: // RTCHi
break;
case 0x2E04: // RTCLo
break;
}
}
/////////////////////////////////////////////////////////////////////////////
//
// Generate random data
//
static uint32 yamrand16(struct YAM_STATE *state) {
state->randseed = 1103515245 * state->randseed + 12345;
return state->randseed >> 16;
}
/////////////////////////////////////////////////////////////////////////////
//
// Envelope-related calculations
//
//
// Adjust actual rate to get effective rate
//
static uint32 env_adjustrate(struct YAM_CHAN *chan, uint32 rate) {
sint32 effrate = rate * 2;
if(chan->krs < 0xF) {
effrate += (chan->fns >> 9) & 1;
effrate += chan->krs * 2;
effrate = (effrate - 8) + (chan->oct ^ 8);
}
// Clipping is important because of the table lookups
if(effrate <= 0) return 0;
if(effrate >= 0x3C) return 0x3C;
return effrate;
}
//
// Determine whether a step is going to occur here
//
static int env_needstep(uint32 effrate, uint32 odometer) {
uint32 shift;
uint32 pattern;
uint32 bitplace;
if(effrate <= 0x01) return 0;
if(effrate >= 0x30) return ((odometer & 1) == 0);
shift = 12 - ((effrate - 1) >> 2);
pattern = (effrate - 1) & 3;
if(odometer & ((1<<shift)-1)) return 0;
bitplace = (odometer >> shift) & 7;
return (0xFFFDDDD5 >> (pattern * 8 + bitplace)) & 1;
// 11010101 0x01 each bit is 4096 samples
// 11011101 0x02
// 11111101 0x03
// 11111111 0x04
}
/////////////////////////////////////////////////////////////////////////////
//
// Read next sample
//
static void readnextsample(
struct YAM_STATE *state,
struct YAM_CHAN *chan,
sint32 sample_offset,
uint8 advance
) {
sint32 s = 0;
//
// If the sampler is inactive, simply write 0
//
if(!(chan->sampler_dir)) goto done;
//
// Process envelope link and lowpass phase reset
//
if(advance && chan->playpos == chan->loopstart) {
if(chan->link && chan->envstate == 0) { chan->envstate = 1; }
if(chan->lfore) chan->lfophase = 0;
// and save adpcm loop-start values
if(!(chan->adpcminloop)) {
chan->adpcmstep_loopstart = chan->adpcmstep;
chan->adpcmprev_loopstart = chan->adpcmprev;
chan->adpcminloop = 1;
}
// maybe do something if the loop type is fancy
switch(chan->sampler_looptype) {
case LOOP_NONE:
case LOOP_FORWARDS:
break;
case LOOP_BACKWARDS:
chan->playpos = chan->loopend - 1;
chan->playpos &= 0xFFFF;
chan->sampler_dir = -1;
break;
case LOOP_BIDIRECTIONAL:
chan->sampler_dir = 1;
break;
}
}
//
// Obtain sample
//
switch(chan->pcms) {
case 0: // 16-bit signed LSB-first
s = *(sint16*)(((sint8*)(state->ram_ptr)) + (((chan->sampleaddr + 2 * (chan->playpos + sample_offset)) ^ (state->mem_word_address_xor)) & (state->ram_mask)));
s ^= chan->sampler_invert;
break;
case 1: // 8-bit signed
s = *(sint8*)(((sint8*)(state->ram_ptr)) + (((chan->sampleaddr + chan->playpos + sample_offset) ^ (state->mem_byte_address_xor)) & (state->ram_mask)));
s ^= chan->sampler_invert >> 8;
s <<= 8;
break;
case 2: // 4-bit ADPCM
s = *(uint8*)(((uint8*)(state->ram_ptr)) + (((chan->sampleaddr + (chan->playpos >> 1)) ^ (state->mem_byte_address_xor)) & (state->ram_mask)));
s >>= 4 * ((chan->playpos & 1) ^ 0);
s &= 0xF;
{ sint32 out = (chan->adpcmstep * adpcmdiff[s & 7]) / 8;
if(out > ( 0x7FFF)) { out = 0x7FFF; }
out*=1-((s >> 2) & 2);
out+=chan->adpcmprev;
if(out > ( 0x7FFF)) { out = ( 0x7FFF); /* logf("<adpcmoverflow>"); */ }
if(out < (-0x8000)) { out = (-0x8000); /* logf("<adpcmunderflow>"); */ }
chan->adpcmstep = (chan->adpcmstep * adpcmscale[s & 7]) >> 8;
if(chan->adpcmstep > 0x6000) { chan->adpcmstep = 0x6000; }
if(chan->adpcmstep < 0x007F) { chan->adpcmstep = 0x007F; }
chan->adpcmprev = out;
s = out;
}
break;
}
switch(chan->ssctl) {
case 0: break;
case 1: s = ((sint16)(yamrand16(state))); break;
case 2: s = 0; break;
case 3: s = 0; break;
}
//
// Advance play position
//
if(advance) {
chan->playpos += ((sint32)(chan->sampler_dir));
chan->playpos &= 0xFFFF;
if(chan->playpos == chan->loopend) {
switch(chan->sampler_looptype) {
case LOOP_NONE:
chan->sampler_dir = 0;
chan->playpos = 0;
goto done;
case LOOP_FORWARDS:
chan->playpos = chan->loopstart;
chan->adpcmstep = chan->adpcmstep_loopstart;
chan->adpcmprev = chan->adpcmprev_loopstart;
chan->lp = 1;
break;
case LOOP_BACKWARDS:
break;
case LOOP_BIDIRECTIONAL:
chan->sampler_dir = -1;
chan->playpos -= 2;
chan->playpos &= 0xFFFF;
break;
}
}
}
done:
//
// Write the new sample
//
chan->samplebufcur = chan->samplebufnext;
chan->samplebufnext = s;
}
/////////////////////////////////////////////////////////////////////////////
//
// Generate samples
// Samples are returned in 20-bit format
// Returns the number of samples actually generated
//
static uint32 generate_samples(
struct YAM_STATE *state,
struct YAM_CHAN *chan,
sint32 *buf,
uint32 odometer,
uint32 samples
) {
uint32 g;
uint32 base_phaseinc;
uint32 lfophaseinc = lfophaseinctable[chan->lfof];
uint32 bufptrsave = state->bufptr;
//gfreq[samples]++;
//printf("generate_samples(%08X,%08X,%u)\n",chan,buf,samples);
{ uint32 oct = chan->oct^8;
uint32 fns = chan->fns^0x400;
base_phaseinc = fns << oct;
// weird ADPCM thing mentioned in official doc
if(chan->pcms == 2 && oct >= 0xA) { base_phaseinc <<= 1; }
}
for(g = 0; g < samples; g++) {
//buf[g]=g*100;continue;
//
// If the amp envelope is inactive, quit
//
if(chan->envlevel >= 0x3C0) {
chan->envlevel = 0x1FFF;
break;
}
//
// If we must generate a sample, generate it
//
if(buf) {
sint32 s, s_cur, s_next, f;
// Apply SCSP ring modulation, if necessary
if(state->version==1 && (chan->mdl!=0 || chan->mdxsl!=0 || chan->mdysl!=0)) {
sint32 smp=(state->ringbuf[(state->bufptr-64+chan->mdxsl)&(32*RINGMAX-1)]+state->ringbuf[(state->bufptr-64+chan->mdysl)&(32*RINGMAX-1)])/2;
smp<<=0xA; // associate cycle with 1024
smp>>=0x1A-chan->mdl; // ex. for MDL=0xF, sample range corresponds to +/- 64 pi (32=2^5 cycles) so shift by 11 (16-5 == 0x1A-0xF)
readnextsample(state, chan, smp, 0);
readnextsample(state, chan, smp+1, 0);
}
// Generate interpolated sample
s_cur = chan->samplebufcur;
s_next = chan->samplebufnext;
f = ((chan->frcphase) >> 4) & 0x3FFF;
s = (s_next * f) + (s_cur * (0x4000-f));
s >>= 14; // s is 16-bit
// Apply attenuation, if we want it
if(!(chan->voff)) {
uint32 attenuation;
sint32 linearvol;
attenuation = ((uint32)(chan->tl)) << 2;
attenuation += ((uint32)(chan->envlevel)) & ((uint32)(chan->envlevelmask[chan->envstate]));
// LFO amplitude modulation
if(chan->alfos) {
uint32 att_wave_y = 0;
switch(chan->alfows) {
case 0: // sawtooth
att_wave_y = ((uint32)(chan->lfophase)) >> 24;
break;
case 1: // square
att_wave_y = (((sint32)(chan->lfophase)) >> 31) & 0xFF;
break;
case 2: // triangle
att_wave_y = (chan->lfophase >> 23) & 0xFF;
if(chan->lfophase & 0x80000000) { att_wave_y ^= 0xFF; }
break;
case 3: // noise
att_wave_y = yamrand16(state) & 0xFF;
break;
}
attenuation += (att_wave_y >> (7 - (chan->alfos)));
}
if(attenuation >= 0x3C0) {
s = 0;
} else {
// Convert log attenuation to linear volume
linearvol = ((attenuation & 0x3F) ^ 0x7F) + 1;
s *= linearvol; s >>= 7 + (attenuation >> 6);
}
}
// Store in ring modulation buffer, if we're SCSP and it's enabled
if(state->version == 1 && !chan->stwinh) {
state->ringbuf[state->bufptr] = s;
}
// Apply filter, if we want it
if(!(chan->lpoff)) {
uint32 fv = chan->lpflevel;
uint32 qv = chan->q & 0x1F;
sint32 f = (((fv & 0xFF) | 0x100) << 4) >> ((fv >> 8) ^ 0x1F);
sint32 q = qtable[qv];
s = f * s + (0x2000 - f + q) * (chan->lpp1) - q * (chan->lpp2);
s >>= 13;
chan->lpp2 = chan->lpp1;
chan->lpp1 = s;
}
// Write output
s <<= 4;
buf[g] = s;
}
state->bufptr = (state->bufptr + 32) & (32*RINGMAX-1);
//
// Now we need to advance the channel state machine, regardless of
// whether we're generating output or not
//
//
// Advance LFO phase
//
chan->lfophase += lfophaseinc;
//
// Advance amplitude envelope
//
{ uint32 effectiverate = env_adjustrate(chan, chan->ar[chan->envstate]);
if(env_needstep(effectiverate, odometer)) {
switch(chan->envstate) {
case 0: // attack
chan->envlevel -= (chan->envlevel >> envattackshift[effectiverate][odometer&3]) + 1;
if(chan->envlevel == 0) { chan->envstate = 1; }
break;
case 1: // decay
chan->envlevel += envdecayvalue[effectiverate][odometer&3];
if((chan->envlevel >> 5) >= chan->dl) { chan->envstate = 2; }
break;
case 2: // sustain
case 3: // release
chan->envlevel += envdecayvalue[effectiverate][odometer&3];
break;
}
}
}
//
// Advance filter envelope
//
{ uint32 effectiverate = env_adjustrate(chan, chan->fr[chan->lpfstate]);
if(env_needstep(effectiverate, odometer)) {
uint32 d = envdecayvalue[effectiverate][odometer&3];
uint32 target = chan->flv[chan->lpfstate+1];
if(chan->lpflevel < target) {
uint32 maxd = target - chan->lpflevel;
if(d > maxd) { d = maxd; }
chan->lpflevel += d;
} else if(chan->lpflevel > target) {
uint32 maxd = chan->lpflevel - target;
if(d > maxd) { d = maxd; }
chan->lpflevel -= d;
} else {
if(chan->lpfstate < 3) { chan->lpfstate++; }
}
}
}
//
// Advance the sample phase
//
{ uint32 realphaseinc = base_phaseinc;
//
// LFO pitch shifting
//
if(chan->plfos) {
uint32 pitch_wave_y = 0;
switch(chan->plfows) {
case 0: // sawtooth
pitch_wave_y = chan->lfophase ^ 0x80000000;
break;
case 1: // square
pitch_wave_y = (chan->lfophase & 0x80000000) ? 0 : 0xFFFFFFFF;
break;
case 2: // triangle
pitch_wave_y = (chan->lfophase << 1) + 0x80000000;
if(chan->lfophase >= 0x40000000 && chan->lfophase < 0xC0000000) {
pitch_wave_y = ~pitch_wave_y;
}
break;
case 3: // noise
pitch_wave_y = yamrand16(state) << 16;
break;
}
{ uint32 maxvary = base_phaseinc >> (10-(chan->plfos));
uint32 scaled_pitch_wave_y =
(((uint64)(maxvary*2)) * ((uint64)pitch_wave_y)) >> 32;
realphaseinc = base_phaseinc + scaled_pitch_wave_y - maxvary;
}
}
//
// Advance phase, and read new sample data if necessary
//
chan->frcphase += realphaseinc;
while(chan->frcphase >= 0x40000) {
chan->frcphase -= 0x40000;
readnextsample(state, chan, 0, 1);
}
}
// Advance our temporary odometer copy
odometer++;
// Done with this sample!
}
state->bufptr = bufptrsave;
return g;
}
/////////////////////////////////////////////////////////////////////////////
//
// Render a single channel and add it to the given outputs
//
// directout or fxout may be NULL
//
static void render_and_add_channel(
struct YAM_STATE *state,
struct YAM_CHAN *chan,
sint32 *directout,
sint32 *fxout,
uint32 odometer,
uint32 samples
) {
uint32 i;
sint32 localbuf[RENDERMAX];
uint32 rendersamples;
// Channel does nothing if attenuation >= 0x3C0
if(chan->envlevel >= 0x3C0) { chan->envlevel = 0x1FFF; return; }
if(!chan->disdl) { directout = NULL; }
if(!chan->dsplevel) { fxout = NULL; }
// Generate samples
rendersamples = generate_samples(
state,
chan,
(!chan->mute && (directout || fxout || (state->version == 1 && !chan->stwinh))) ? localbuf : NULL,
odometer,
samples
);
// Add to output
if(directout) {
uint8 att_l, att_r;
sint32 lin_l, lin_r;
convert_stereo_send_level(
chan->disdl,
(state->mono) ? 0 : (chan->dipan),
&att_l, &att_r, &lin_l, &lin_r
);
for(i = 0; i < rendersamples; i++) {
directout[0] += (localbuf[i]*lin_l) >> att_l;
directout[1] += (localbuf[i]*lin_r) >> att_r;
directout += 2;
}
}
if(fxout) {
uint32 att = (chan->dsplevel) ^ 0xF;
sint32 lin = 4 - (att & 1);
att >>= 1; att += 2;
for(i = 0; i < rendersamples; i++) {
fxout[0] += (localbuf[i]*lin) >> att;
fxout += 16;
}
}
}
/////////////////////////////////////////////////////////////////////////////
//
// Floating-point conversion
//
static uint32 __fastcall float16_to_int24(uint32 f) {
uint32 exponent = (f >> 11) & 0xF;
sint32 result;
result = (f & 0x8000) << 16; // take the sign in bit 31
result >>= 1; // duplicate the sign in bit 30
if(exponent >= 12) { exponent = 11; } // cap exponent to 11 for denormals
else { result ^= 0x40000000; } // reverse bit 30 for normals
result |= (f & 0x7FF) << 19; // set bits 29-0 to the mantissa
result >>= exponent + 8; // shift right by the exponent + 8
return result;
}
static uint32 __fastcall int24_to_float16(uint32 i) {
uint32 exponent = 0;
uint32 sign = i & 0x00800000;
if(sign) { i = ~i; }
i &= 0x7FFFFF;
if(i < 0x020000) { exponent += (6<<11); i <<= 6; }
if(i < 0x100000) { exponent += (3<<11); i <<= 3; }
if(i < 0x400000) { exponent += (1<<11); i <<= 1; }
if(i < 0x400000) { exponent += (1<<11); i <<= 1; }
if(i < 0x400000) { exponent += (1<<11); }
i >>= 11;
i &= 0x7FF;
i |= exponent;
if(sign) { i ^= 0x87FF; }
return i;
}
/////////////////////////////////////////////////////////////////////////////
#define SINT32ATOFFSET(a,b) (*((sint32*)(((uint8*)(a))+(b))))
/////////////////////////////////////////////////////////////////////////////
//
// Execute one sample on the effects DSP
//
static void __fastcall dsp_sample_interpret(struct YAM_STATE *state) {
const struct MPRO *mpro = state->mpro;
uint32 i;
// Pre-compute ringbuffer size mask
uint32 rbmask = (1 << ((state->rbl)+13)) - 1;
//
// For 128 steps:
//
for(i = 0; i < 128; i++, mpro++) {
sint32 b, x, y, shifted;
//
// Proper skip for "empty" instructions
//
if((mpro->__kisxzbon) & 0x80) {
x = state->temp[(state->mdec_ct)&0x7F];
state->xzbchoice[XZBCHOICE_ACC] =
((((sint64)x) * ((sint64)(state->yychoice[YYCHOICE_FRC_REG]))) >> 12) + x;
continue;
}
state->xzbchoice[XZBCHOICE_TEMP] = state->temp[((mpro->t_0rrrrrrr)+(state->mdec_ct))&0x7F];
state->yychoice[YYCHOICE_COEF] = state->coef[mpro->c_0rrrrrrr];
//
// Input read
//
state->xzbchoice[XZBCHOICE_INPUTS] = state->inputs[mpro->i_00rrrrrr];
//
// Input write
//
state->inputs[mpro->i_0T0wwwww] = state->mem_in_data[i & 3];
//
// B selection
//
b = SINT32ATOFFSET(state->xzbchoice, (mpro->__kisxzbon) & 0x0C);
b ^= ((sint32)(mpro->negb));
b -= ((sint32)(mpro->negb));
//
// X selection
//
x = SINT32ATOFFSET(state->xzbchoice, (mpro->__kisxzbon) & 0x10);
//
// Y selection
//
y = SINT32ATOFFSET(state->yychoice, (mpro->m_wrAFyyYh) & 0x0C);
//
// Y latch
//
if(mpro->m_wrAFyyYh & 2) {
sint32 inputs = state->xzbchoice[XZBCHOICE_INPUTS];
state->yychoice[YYCHOICE_Y_REG_H] = inputs >> 11;
state->yychoice[YYCHOICE_Y_REG_L] = (inputs >> 4) & 0xFFF;
}
//
// Shift of previous accumulator
//
shifted = state->xzbchoice[XZBCHOICE_ACC] << ((mpro->m_wrAFyyYh) & 1);
if((mpro->__kisxzbon) & 0x20) {
if(shifted > ( 0x7FFFFF)) { shifted = ( 0x7FFFFF); }
if(shifted < (-0x800000)) { shifted = (-0x800000); }
}
//
// Multiply and accumulate
//
state->xzbchoice[XZBCHOICE_ACC] = ((((sint64)x) * ((sint64)y)) >> 12) + b;
//
// Temp write
//
if(mpro->t_Twwwwwww < 0x80) {
state->temp[((mpro->t_Twwwwwww)+(state->mdec_ct))&0x7F] = shifted;
}
//
// Fractional address latch
//
if((mpro->m_wrAFyyYh) & 0x10) {
if((mpro->__kisxzbon) & 0x40) {
state->yychoice[YYCHOICE_FRC_REG] = shifted & 0xFFF;
} else {
state->yychoice[YYCHOICE_FRC_REG] = shifted >> 11;
}
}
//
// Memory operations
//
if((mpro->m_wrAFyyYh) & 0xC0) {
sint32 tm = ((sint32)(mpro->tablemask));
uint32 a = state->madrs[mpro->m_00aaaaaa];
a += (state->adrs_reg) & ((sint32)(mpro->adrmask));
a += (mpro->__kisxzbon) & 1;
a += (state->mdec_ct) & (~tm);
a &= (rbmask | tm) & 0xFFFF;
a <<= 1;
a += state->rbp;
a &= (state->ram_mask);
a ^= state->mem_word_address_xor;
if(mpro->m_wrAFyyYh & 0x40) { // MRD
sint32 memdata = *((sint16*)(((sint8*)(state->ram_ptr))+a));
if(!(mpro->__kisxzbon & 2)) { memdata = float16_to_int24(memdata); }
else { memdata <<= 8; }
state->mem_in_data[(i+2)&3] = memdata;
}
if(mpro->m_wrAFyyYh & 0x80) { // MWT
sint32 memdata = shifted;
if(!(mpro->__kisxzbon & 2)) { memdata = int24_to_float16(memdata); }
else { memdata >>= 8; }
*((sint16*)(((sint8*)(state->ram_ptr))+a)) = memdata;
}
}
//
// Address latch
//
if((mpro->m_wrAFyyYh) & 0x20) {
if((mpro->__kisxzbon) & 0x40) {
state->adrs_reg = shifted >> 12;
} else {
state->adrs_reg = state->xzbchoice[XZBCHOICE_INPUTS] >> 16;
}
state->adrs_reg &= 0xFFF;
}
//
// Effect output write
//
state->efreg[mpro->e_000Twwww] = shifted >> 8;
// End of step
}
}
/////////////////////////////////////////////////////////////////////////////
//
//
//
#define C(N) { *outp++ = ((uint8)(N)); }
#define C32(N) { *((uint32*)outp) = ((uint32)(N)); outp += 4; }
#define C32CALL(N) { *((uint32*)outp) = ((uint32)(N)) - (((uint32)(outp))+4); outp += 4; }
#define STRUCTOFS(thetype,thefield) ((uint32)(&(((struct thetype*)0)->thefield)))
#define STATEOFS(thefield) STRUCTOFS(YAM_STATE,thefield)
#ifdef ENABLE_DYNAREC
static int instruction_uses_shifted(struct MPRO *mpro) {
// uses SHIFTED if:
// - ADRL and INTERP
if((mpro->m_wrAFyyYh & 0x20) != 0) {
if((mpro->__kisxzbon & 0x40) != 0) return 1;
}
// - FRCL
if((mpro->m_wrAFyyYh & 0x10) != 0) return 1;
// - EWT
if((mpro->e_000Twwww & 0x10) == 0) return 1;
// - TWT
if((mpro->t_Twwwwwww & 0x80) == 0) return 1;
// - MWT
if((mpro->m_wrAFyyYh & 0x80) != 0) return 1;
// otherwise not
return 0;
}
#endif
//
// Compile x86 code out of the current DSP program/coef/address set
// Also uses the current ringbuffer pointer and size, and ram pointer/mask/memwordxor
// So if any of those change, the compiled dynacode must be invalidated
//
#ifdef ENABLE_DYNAREC
static void dynacompile(struct YAM_STATE *state) {
// Pre-compute ringbuffer size mask
uint32 rbmask = (1 << ((state->rbl)+13)) - 1;
uint8 *outp = state->dynacode;
int i;
char ins_uses_acc[129];
char ins_uses_shifted[129];
//
// Put some slop here to avoid cache problems?
//
outp += DYNACODE_SLOP_SIZE;
//
// Figure out which instructions need what things
//
memset(ins_uses_acc, 0, sizeof(ins_uses_acc));
memset(ins_uses_shifted, 0, sizeof(ins_uses_shifted));
ins_uses_acc[128] = 1;
ins_uses_shifted[128] = 1;
for(i = 0; i < 128; i++) {
struct MPRO *mpro = state->mpro + i;
ins_uses_shifted[i] = instruction_uses_shifted(mpro);
ins_uses_acc[i] =
(ins_uses_shifted[i]) ||
((mpro->__kisxzbon & 0x0C) == 0x04);
}
//
// Prefix
//
C(0x60) // pusha
C(0x89) C(0xCF) // mov edi, ecx
C(0x8B) C(0xAF) C32(STATEOFS(mdec_ct)) // mov ebp,[edi+<OFS32:mdec_ct>]
C(0x8B) C(0xB7) C32(STATEOFS(xzbchoice[XZBCHOICE_ACC])) // mov esi,[edi+<OFS32:acc>]
// 16 bytes
//
// Each instruction
//
for(i = 0; i < 128; i++) {
struct MPRO *mpro = state->mpro + i;
//
// If we need to compute the new accumulator, do so (to EAX)
//
if(ins_uses_acc[i + 1]) {
int need_tra =
((mpro->__kisxzbon & 0x10) == 0x00) ||
((mpro->__kisxzbon & 0x0C) == 0x00);
//
// If we will need TRA in the future, compute it in ECX
//
if(need_tra) {
C(0x8D) C(0x4D) C(mpro->t_0rrrrrrr) // lea ecx,[ebp+<BYTE:TRA>]
C(0x83) C(0xE1) C(0x7F) // and ecx,7Fh
}
// 6 bytes max
//
// Load EAX with the Y value
//
switch(mpro->m_wrAFyyYh & 0x0C) {
case 0x00: // FRC_REG
C(0x8B) C(0x87) C32(STATEOFS(yychoice[YYCHOICE_FRC_REG])) // mov eax,[edi+yychoice0]
break;
case 0x04: // COEF
{ sint32 coef = state->coef[mpro->c_0rrrrrrr];
C(0xB8) C32(coef) // mov eax,<SINT32:COEF>
}
break;
case 0x08: // Y_REG_H
C(0x8B) C(0x87) C32(STATEOFS(yychoice[YYCHOICE_Y_REG_H])) // mov eax,[edi+yychoice2]
break;
case 0x0C: // Y_REG_L
C(0x8B) C(0x87) C32(STATEOFS(yychoice[YYCHOICE_Y_REG_L])) // mov eax,[edi+yychoice3]
break;
}
// 6 bytes max
//
// Multiply by the X value
//
if((mpro->__kisxzbon & 0x10) == 0) {
C(0xF7) C(0xAC) C(0x8F) C32(STATEOFS(temp)) // imul dword ptr [edi+ecx*4+temp]
} else {
C(0xF7) C(0xAF) C32(STATEOFS(inputs[mpro->i_00rrrrrr])) // imul dword ptr [edi+<OFS32:INPUTS+4*IRA>]
}
C(0x0F) C(0xAC) C(0xD0) C(0x0C) // shrd eax,edx,12
// 11 bytes max
//
// Add B if necessary
//
if((mpro->__kisxzbon & 0x08) == 0) {
if(mpro->negb == 0) {
if((mpro->__kisxzbon & 0x04) == 0) {
C(0x03) C(0x84) C(0x8F) C32(STATEOFS(temp)) // add eax,[edi+ecx*4+<OFS32:temp>]
} else {
C(0x01) C(0xF0) // add eax,esi
}
} else {
if((mpro->__kisxzbon & 0x04) == 0) {
C(0x2B) C(0x84) C(0x8F) C32(STATEOFS(temp)) // sub eax,[edi+ecx*4+<OFS32:temp>]
} else {
C(0x29) C(0xF0) // sub eax,esi
}
}
}
// 7 bytes max
}
// 30 bytes max
//
// If YRL is on, latch Y register
//
if(mpro->m_wrAFyyYh & 2) {
C(0x8B) C(0x97) C32(STATEOFS(inputs[mpro->i_00rrrrrr])) // mov edx, [edi+<OFS32:INPUTS+4*IRA>]
C(0xC1) C(0xFA) C(0x0B) // sar edx,11
C(0x89) C(0x97) C32(STATEOFS(yychoice[YYCHOICE_Y_REG_H])) // mov [edi+<OFS32:yychoice2>],edx
C(0x8B) C(0x97) C32(STATEOFS(inputs[mpro->i_00rrrrrr])) // mov edx, [edi+<OFS32:INPUTS+4*IRA>]
C(0xC1) C(0xFA) C(0x04) // sar edx,4
C(0x81) C(0xE2) C32(0x00000FFF) // and edx,0FFFh
C(0x89) C(0x97) C32(STATEOFS(yychoice[YYCHOICE_Y_REG_L])) // mov [edi+<OFS32:yychoice3>],edx
}
// 36 bytes max
//
// If we will be needing SHIFTED this instruction, edx will become SHIFTED:
//
if(ins_uses_shifted[i]) {
if((mpro->__kisxzbon & 0x20) == 0) { // no saturate
C(0x89) C(0xF2) // mov edx,esi
C(0xC1) C(0xE2) C(8+(mpro->m_wrAFyyYh & 1)) // shl edx,<BYTE:8+sh>
C(0xC1) C(0xFA) C(0x08) // sar edx,8
// 8 bytes max
} else { // saturate
if((mpro->m_wrAFyyYh & 1) == 0) { // NOT shifting left
C(0x8D) C(0x96) C32(0x00800000) // lea edx,[esi+800000h]
C(0xF7) C(0xC2) C32(0xFF000000) // test edx,0FF000000h
C(0x89) C(0xF2) // mov edx,esi
// 14 bytes max
} else { // shifting left
C(0x8D) C(0x94) C(0x36) C32(0x00800000) // lea edx,[esi+esi+800000h]
C(0xF7) C(0xC2) C32(0xFF000000) // test edx,0FF000000h
C(0x8D) C(0x14) C(0x36) // lea edx,[esi+esi]
// 16 bytes max
}
C(0x74) C(0x09) // je +9bytes
C(0xC1) C(0xFA) C(0x1F) // sar edx,1Fh
C(0x81) C(0xF2) C32(0x007FFFFF) // xor edx,7FFFFFh
// 27 bytes max
}
}
// 27 bytes max
//
// If we need the accumulator next instruction, save it
//
if(ins_uses_acc[i + 1]) {
C(0x89) C(0xC6) // mov esi,eax
}
// 2 bytes max
//
// If FRCL is set, latch it
//
if(mpro->m_wrAFyyYh & 0x10) {
C(0x89) C(0xD0) //mov eax,edx
if(mpro->__kisxzbon & 0x40) { // interpolate mode
C(0x25) C32(0x00000FFF) // and eax,0FFFh
} else { // non-interpolate mode
C(0xC1) C(0xF8) C(0x0B) // sar eax,11
}
C(0x89) C(0x87) C32(STATEOFS(yychoice[YYCHOICE_FRC_REG])) // mov [edi+<OFS32:yychoice0>],eax
}
// 13 bytes max
//
// If TWT is on, perform the temp write of SHIFTED
//
if((mpro->t_Twwwwwww & 0x80) == 0) {
C(0x8D) C(0x4D) C(mpro->t_Twwwwwww) // lea ecx,[ebp+<BYTE:TWA>]
C(0x83) C(0xE1) C(0x7F) // and ecx,7Fh
C(0x89) C(0x94) C(0x8F) C32(STATEOFS(temp)) // mov [edi+ecx*4+<OFS32:temp>],edx
}
// 13 bytes max
//
// If EWT is on, perform write of EFREG
//
if((mpro->e_000Twwww & 0x10) == 0) {
C(0x89) C(0xD0) // mov eax,edx
C(0xC1) C(0xF8) C(0x08) // sar eax,8
C(0x89) C(0x87) C32(STATEOFS(efreg[mpro->e_000Twwww])) // mov [edi+<OFS32:EFREG+4*EWA>],eax
}
// 11 bytes max
//
// If we'll be needing an address, compute it in EBX (a word address)
// ODD LINES ONLY
//
if((i & 1) && (mpro->m_wrAFyyYh & 0xC0)) {
uint32 madrsnx = state->madrs[mpro->m_00aaaaaa];
if(mpro->__kisxzbon & 1) { madrsnx++; }
madrsnx &= 0xFFFF;
if(mpro->tablemask == 0) {
C(0x8D) C(0x9D) C32(madrsnx) // lea ebx,[ebp+<DWORD:MADRS+NXADR>]
if(mpro->adrmask != 0) {
C(0x03) C(0x9F) C32(STATEOFS(adrs_reg)) // add ebx,[edi+<OFS32:adrs_reg>]
}
C(0x81) C(0xE3) C32(rbmask) // and ebx,<DWORD:rblmask>
// 18 bytes max
} else {
C(0xBB) C32(madrsnx) // mov ebx,<DWORD:MADRS+NXADR masked by 0xFFFF>
if(mpro->adrmask != 0) {
C(0x03) C(0x9F) C32(STATEOFS(adrs_reg)) // add ebx,[edi+<OFS32:adrs_reg>]
C(0x81) C(0xE3) C32(0x0000FFFF) // and ebx,0FFFFh
}
// 17 bytes max
}
C(0x81) C(0xC3) C32(state->rbp / 2) // add ebx,<DWORD:rbp/2>
C(0x81) C(0xE3) C32(state->ram_mask / 2) // and ebx,<DWORD:RAMMASK/2>
if((state->mem_word_address_xor / 2) != 0) {
C(0x83) C(0xF3) C(state->mem_word_address_xor / 2) // xor ebx,<BYTE:memwxor/2>
}
}
// 33 bytes max ODD LINES ONLY
//
// If ADRL is set, latch address reg
//
if(mpro->m_wrAFyyYh & 0x20) {
if(mpro->__kisxzbon & 0x40) { // interpolate mode
C(0x89) C(0xD0) // mov eax,edx
C(0xC1) C(0xF8) C(0x0C) // sar eax,12
} else {
C(0x8B) C(0x87) C32(STATEOFS(inputs[mpro->i_00rrrrrr])) // mov eax,[edi+<OFS32:INPUTS+4*IRA>]
C(0xC1) C(0xF8) C(0x10) // sar eax,16
}
C(0x25) C32(0x00000FFF) // and eax,0FFFh
C(0x89) C(0x87) C32(STATEOFS(adrs_reg)) // mov [edi+<OFS32:adrs_reg>],eax
}
// 20 bytes max
//
// If MRD is set, read from ebx*2:
// ODD LINES ONLY
//
if((i & 1) && (mpro->m_wrAFyyYh & 0x40)) {
if((mpro->__kisxzbon & 0x02) == 0) { // NOFL=0
C(0x0F) C(0xBF) C(0x8C) C(0x1B) C32(state->ram_ptr) // movsx ecx, word ptr [ebx+ebx+<DWORD:RAMPTR>]
C(0xE8) C32CALL(float16_to_int24) // call float16_to_int24
// 13 bytes max
} else { // NOFL=1:
C(0x0F) C(0xBF) C(0x84) C(0x1B) C32(state->ram_ptr) // movsx eax, word ptr [ebx+ebx+<DWORD:RAMPTR>]
C(0xC1) C(0xE0) C(0x08) // shl eax,8
// 11 bytes max
}
C(0x89) C(0x87) C32(STATEOFS(mem_in_data[(i+2)&3])) // mov [edi+<OFS32:meminptr>],eax
// 19 bytes max
//
// Or, if MWT is set, write edx to ebx*2:
// ODD LINES ONLY
//
} else if((i & 1) && (mpro->m_wrAFyyYh & 0x80)) {
if((mpro->__kisxzbon & 0x02) == 0) { // NOFL=0
C(0x89) C(0xD1) // mov ecx,edx
C(0xE8) C32CALL(int24_to_float16) // call int24_to_float16
C(0x66) C(0x89) C(0x84) C(0x1B) C32(state->ram_ptr) // mov [ebx+ebx+<DWORD:RAMPTR>],ax
// 15 bytes max
} else { // NOFL=1:
C(0xC1) C(0xFA) C(0x08) // sar edx,8
C(0x66) C(0x89) C(0x94) C(0x1B) C32(state->ram_ptr) // mov [ebx+ebx+<DWORD:RAMPTR>],dx
// 11 bytes max
}
// 15 bytes max
}
// 19 bytes max ODD LINES ONLY
//
// If IWT is on, perform input write
// ODD LINES ONLY
//
if((i&1) && ((mpro->i_0T0wwwww & 0x40) == 0)) {
C(0x8B) C(0x97) C32(STATEOFS(mem_in_data[i&3])) // mov edx, [edi+<OFS32:memindata>]
C(0x89) C(0x97) C32(STATEOFS(inputs[mpro->i_0T0wwwww])) // mov [edi+<OFS32:INPUTS+4*IWA>],edx
}
// 12 bytes max ODD LINES ONLY
}
//
// Suffix
//
C(0x89) C(0xB7) C32(STATEOFS(xzbchoice[XZBCHOICE_ACC])) // mov [edi+<OFS32:acc>],esi
C(0x61) // popa
C(0xC3) // retn
// 8 bytes
//
// Set valid flag
//
state->dsp_dyna_valid = 1;
//{FILE*f=fopen("C:\\Corlett\\yamdyna.bin","wb");if(f){fwrite(state->dynacode,1,0x6000,f);fclose(f);}}
}
#endif
/////////////////////////////////////////////////////////////////////////////
typedef void (__fastcall *dsp_sample_t)(struct YAM_STATE *state);
/////////////////////////////////////////////////////////////////////////////
//
// Render effects by emulating the DSP
//
static void render_effects(
struct YAM_STATE *state,
sint32 *fxbus,
sint32 *out,
uint32 samples
) {
dsp_sample_t samplefunc;
uint32 i, j;
uint8 efatt_l[16];
uint8 efatt_r[16];
sint32 eflin_l[16];
sint32 eflin_r[16];
#ifdef ENABLE_DYNAREC
if(state->dsp_dyna_enabled) {
if(!(state->dsp_dyna_valid)) {
dynacompile(state);
}
samplefunc = (dsp_sample_t)(((uint8*)(state->dynacode)) + DYNACODE_SLOP_SIZE);
#else
if (0) {
#endif
} else {
samplefunc = dsp_sample_interpret;
}
//
// Determine what the effect out levels are, for left and right
//
for(j = 0; j < 16; j++) {
convert_stereo_send_level(
state->efsdl[j],
(state->mono) ? 0 : state->efpan[j],
efatt_l + j, efatt_r + j,
eflin_l + j, eflin_r + j
);
}
//
// For every sample:
//
for(i = 0; i < samples; i++, fxbus += 16, out += 2) {
//
// Clip and copy fxbus inputs (20-bit, pre-promote to 24-bit)
//
for(j = 0; j < 16; j++) {
sint32 t = fxbus[j];
if(t < (-0x80000)) t = (-0x80000);
if(t > ( 0x7FFFF)) t = ( 0x7FFFF);
state->inputs[0x20 + j] = t << 4;
}
//
// Execute one DSP sample
//
samplefunc(state);
// Advance MDEC_CT
state->mdec_ct--;
//
// Copy outputs out of EFREG, scale accordingly, and add to output
//
for(j = 0; j < 16; j++) if(state->efsdl[j]) {
sint32 ef = (sint32)((sint16)(state->efreg[j]));
ef <<= 4;
out[0] += (ef*eflin_l[j]) >> efatt_l[j];
out[1] += (ef*eflin_r[j]) >> efatt_r[j];
}
}
}
/////////////////////////////////////////////////////////////////////////////
//
// Must not render more than RENDERMAX samples at a time
//
struct render_priority
{
sint32 channel_number;
sint32 priority_level;
};
int __cdecl render_priority_compare(const void * a, const void * b) {
struct render_priority *_a = (struct render_priority *) a;
struct render_priority *_b = (struct render_priority *) b;
return _b->priority_level - _a->priority_level;
}
static void render(struct YAM_STATE *state, uint32 odometer, uint32 samples) {
uint32 i, j;
struct render_priority priority_list[64];
sint32 outbuf[2*RENDERMAX];
sint32 fxbus[16*RENDERMAX];
sint32 *directout;
// sint32 *fxout;
sint16 *buf;
uint32 nchannels;
uint32 bufptr_base;
int wantreverb = 0;
if(!samples) return;
buf = YAMSTATE->out_buf;
directout = (buf && (state->dry_out_enabled)) ? outbuf : NULL;
nchannels = ((YAMSTATE->version) == 1) ? 32 : 64;
// st=odometer;
//if(odometer>=11*44100)dumpch(YAMSTATE,YAMSTATE->chan+11);
/*
if(odometer >= 11*44100) {
static int dumped=0;
if(!dumped) {
dumped=1;
{FILE*f=fopen("C:\\Corlett\\yamdump.ram","wb");
if(f){
fwrite(YAMSTATE->ram_ptr,0x200000,1,f);
fclose(f);
}
}
}
}
*/
//logstep(state,odometer);
// figure out if we want reverb or not
if(buf && (state->dsp_emulation_enabled)) {
for(i = 0; i < 16; i++) { if(state->efsdl[i] != 0) break; }
wantreverb = (i < 16);
} else {
wantreverb = 0;
}
if(buf) {
memset(outbuf, 0, 4*2*samples);
if(wantreverb) memset(fxbus, 0, 4*16*samples);
}
//
// Figure out if any channels need to be rendered before others
//
for(i = 0; i < nchannels; i++) {
priority_list[i].channel_number = i;
priority_list[i].priority_level = 0;
}
if (state->version == 1) {
for(i = 0; i < nchannels; i++) {
struct YAM_CHAN *chan = state->chan + i;
sint32 priority_level = priority_list[i].priority_level + 1;
if (chan->mdxsl) priority_list[(i+chan->mdxsl)&31].priority_level = priority_level;
if (chan->mdysl) priority_list[(i+chan->mdysl)&31].priority_level = priority_level;
}
qsort(&priority_list, nchannels, sizeof(*priority_list), render_priority_compare);
}
bufptr_base = state->bufptr;
//
// Render each channel
//
for(i = 0; i < nchannels; i++) {
struct YAM_CHAN *chan;
j = priority_list[i].channel_number;
chan = state->chan + j;
state->bufptr = bufptr_base + j;
// is 11
render_and_add_channel(state, chan, directout,
wantreverb ? (fxbus + chan->dspchan) : NULL,
odometer, samples
);
}
state->bufptr = (bufptr_base + (32*samples)) & (32*RINGMAX-1);
//
// Emulate DSP effects if desired
//
if(wantreverb) { render_effects(state, fxbus, outbuf, samples); }
//
// Scale, clip and copy output
//
if(buf) {
uint32 att = state->mvol ^ 0xF;
sint32 lin = 4 - (att & 1);
att >>= 1; att += 2; att += 4;
for(i = 0; i < samples; i++) {
sint32 l = outbuf[2 * i + 0];
sint32 r = outbuf[2 * i + 1];
l *= lin; l >>= att;
r *= lin; r >>= att;
if(l < (-0x8000)) l = (-0x8000);
if(r < (-0x8000)) r = (-0x8000);
if(l > ( 0x7FFF)) l = ( 0x7FFF);
if(r > ( 0x7FFF)) r = ( 0x7FFF);
buf[2 * i + 0] = l;
buf[2 * i + 1] = r;
}
}
}
/////////////////////////////////////////////////////////////////////////////
//
// Flush all pending samples into the output buffer
//
void EMU_CALL yam_flush(void *state) {
// return;
//printf("yam_flush(%up)",YAMSTATE->out_pending);
for(;;) {
uint32 n = YAMSTATE->out_pending;
if(n < 1) { break; }
if(n > RENDERMAX) { n = RENDERMAX; }
render(YAMSTATE, YAMSTATE->odometer - YAMSTATE->out_pending, n);
YAMSTATE->out_pending -= n;
if(YAMSTATE->out_buf) { YAMSTATE->out_buf += 2 * n; }
}
}
/////////////////////////////////////////////////////////////////////////////
//
// Prepare or unprepare dynacode buffer for execution
//
void EMU_CALL yam_prepare_dynacode(void *state) {
#ifdef ENABLE_DYNAREC
#ifdef _WIN32
DWORD i;
VirtualProtect( &YAMSTATE->dynacode, sizeof(YAMSTATE->dynacode), PAGE_EXECUTE_READWRITE, &i );
#elif defined(HAVE_MPROTECT)
unsigned long startaddr = &YAMSTATE->dynacode;
unsigned long length = sizeof(YAMSTATE->dynacode);
int psize = getpagesize();
unsigned long addr = ( startaddr & ~(psize - 1) );
mprotect( (char *) addr, length + startaddr - addr + psize, PROT_READ | PROT_WRITE | PROT_EXEC );
#endif
#endif
}
void EMU_CALL yam_unprepare_dynacode(void *state) {
#ifdef ENABLE_DYNAREC
#ifdef _WIN32
DWORD i;
VirtualProtect( &YAMSTATE->dynacode, sizeof(YAMSTATE->dynacode), PAGE_READWRITE, &i );
#elif defined(HAVE_MPROTECT)
unsigned long startaddr = &YAMSTATE->dynacode;
unsigned long length = sizeof(YAMSTATE->dynacode);
int psize = getpagesize();
unsigned long addr = ( startaddr & ~(psize - 1) );
mprotect( (char *) addr, length + startaddr - addr + psize, PROT_READ | PROT_WRITE );
#endif
#endif
}
/////////////////////////////////////////////////////////////////////////////
//
// Mute channels post reset
//
void EMU_CALL yam_set_mute(void *state, uint32 channel, uint32 enable) {
YAMSTATE->chan[channel].mute = (uint8) enable;
}
/////////////////////////////////////////////////////////////////////////////