1010 lines
30 KiB
Plaintext
1010 lines
30 KiB
Plaintext
// ---------------------------------------------------------------------------
|
|
// This file is part of reSID, a MOS6581 SID emulator engine.
|
|
// Copyright (C) 2010 Dag Lem <resid@nimrod.no>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
// ---------------------------------------------------------------------------
|
|
|
|
#define RESID_SID_CC
|
|
|
|
#include "sid.h"
|
|
#include <math.h>
|
|
|
|
#ifndef round
|
|
#define round(x) (x>=0.0?floor(x+0.5):ceil(x-0.5))
|
|
#endif
|
|
|
|
namespace reSID
|
|
{
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Constructor.
|
|
// ----------------------------------------------------------------------------
|
|
SID::SID()
|
|
{
|
|
// Initialize pointers.
|
|
sample = 0;
|
|
fir = 0;
|
|
fir_N = 0;
|
|
fir_RES = 0;
|
|
fir_beta = 0;
|
|
fir_f_cycles_per_sample = 0;
|
|
fir_filter_scale = 0;
|
|
|
|
sid_model = MOS6581;
|
|
voice[0].set_sync_source(&voice[2]);
|
|
voice[1].set_sync_source(&voice[0]);
|
|
voice[2].set_sync_source(&voice[1]);
|
|
|
|
set_sampling_parameters(985248, SAMPLE_FAST, 44100);
|
|
|
|
bus_value = 0;
|
|
bus_value_ttl = 0;
|
|
write_pipeline = 0;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Destructor.
|
|
// ----------------------------------------------------------------------------
|
|
SID::~SID()
|
|
{
|
|
delete[] sample;
|
|
delete[] fir;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Set chip model.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::set_chip_model(chip_model model)
|
|
{
|
|
sid_model = model;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
voice[i].set_chip_model(model);
|
|
}
|
|
|
|
filter.set_chip_model(model);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID reset.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::reset()
|
|
{
|
|
for (int i = 0; i < 3; i++) {
|
|
voice[i].reset();
|
|
}
|
|
filter.reset();
|
|
extfilt.reset();
|
|
|
|
bus_value = 0;
|
|
bus_value_ttl = 0;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Write 16-bit sample to audio input.
|
|
// Note that to mix in an external audio signal, the signal should be
|
|
// resampled to 1MHz first to avoid sampling noise.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::input(short sample)
|
|
{
|
|
// The input can be used to simulate the MOS8580 "digi boost" hardware hack.
|
|
filter.input(sample);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Read registers.
|
|
//
|
|
// Reading a write only register returns the last byte written to any SID
|
|
// register. The individual bits in this value start to fade down towards
|
|
// zero after a few cycles. All bits reach zero within approximately
|
|
// $2000 - $4000 cycles.
|
|
// It has been claimed that this fading happens in an orderly fashion, however
|
|
// sampling of write only registers reveals that this is not the case.
|
|
// NB! This is not correctly modeled.
|
|
// The actual use of write only registers has largely been made in the belief
|
|
// that all SID registers are readable. To support this belief the read
|
|
// would have to be done immediately after a write to the same register
|
|
// (remember that an intermediate write to another register would yield that
|
|
// value instead). With this in mind we return the last value written to
|
|
// any SID register for $4000 cycles without modeling the bit fading.
|
|
// ----------------------------------------------------------------------------
|
|
reg8 SID::read(reg8 offset)
|
|
{
|
|
switch (offset) {
|
|
case 0x19:
|
|
return potx.readPOT();
|
|
case 0x1a:
|
|
return poty.readPOT();
|
|
case 0x1b:
|
|
return voice[2].wave.readOSC();
|
|
case 0x1c:
|
|
return voice[2].envelope.readENV();
|
|
default:
|
|
return bus_value;
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Write registers.
|
|
// Writes are one cycle delayed on the MOS8580. This is only modeled for
|
|
// single cycle clocking.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::write(reg8 offset, reg8 value)
|
|
{
|
|
write_address = offset;
|
|
bus_value = value;
|
|
bus_value_ttl = 0x4000;
|
|
|
|
if (sid_model == MOS8580) {
|
|
// One cycle pipeline delay on the MOS8580; delay write.
|
|
write_pipeline = 1;
|
|
}
|
|
else {
|
|
// No pipeline delay on the MOS6581; write immediately.
|
|
write();
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Write registers.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::write()
|
|
{
|
|
switch (write_address) {
|
|
case 0x00:
|
|
voice[0].wave.writeFREQ_LO(bus_value);
|
|
break;
|
|
case 0x01:
|
|
voice[0].wave.writeFREQ_HI(bus_value);
|
|
break;
|
|
case 0x02:
|
|
voice[0].wave.writePW_LO(bus_value);
|
|
break;
|
|
case 0x03:
|
|
voice[0].wave.writePW_HI(bus_value);
|
|
break;
|
|
case 0x04:
|
|
voice[0].writeCONTROL_REG(bus_value);
|
|
break;
|
|
case 0x05:
|
|
voice[0].envelope.writeATTACK_DECAY(bus_value);
|
|
break;
|
|
case 0x06:
|
|
voice[0].envelope.writeSUSTAIN_RELEASE(bus_value);
|
|
break;
|
|
case 0x07:
|
|
voice[1].wave.writeFREQ_LO(bus_value);
|
|
break;
|
|
case 0x08:
|
|
voice[1].wave.writeFREQ_HI(bus_value);
|
|
break;
|
|
case 0x09:
|
|
voice[1].wave.writePW_LO(bus_value);
|
|
break;
|
|
case 0x0a:
|
|
voice[1].wave.writePW_HI(bus_value);
|
|
break;
|
|
case 0x0b:
|
|
voice[1].writeCONTROL_REG(bus_value);
|
|
break;
|
|
case 0x0c:
|
|
voice[1].envelope.writeATTACK_DECAY(bus_value);
|
|
break;
|
|
case 0x0d:
|
|
voice[1].envelope.writeSUSTAIN_RELEASE(bus_value);
|
|
break;
|
|
case 0x0e:
|
|
voice[2].wave.writeFREQ_LO(bus_value);
|
|
break;
|
|
case 0x0f:
|
|
voice[2].wave.writeFREQ_HI(bus_value);
|
|
break;
|
|
case 0x10:
|
|
voice[2].wave.writePW_LO(bus_value);
|
|
break;
|
|
case 0x11:
|
|
voice[2].wave.writePW_HI(bus_value);
|
|
break;
|
|
case 0x12:
|
|
voice[2].writeCONTROL_REG(bus_value);
|
|
break;
|
|
case 0x13:
|
|
voice[2].envelope.writeATTACK_DECAY(bus_value);
|
|
break;
|
|
case 0x14:
|
|
voice[2].envelope.writeSUSTAIN_RELEASE(bus_value);
|
|
break;
|
|
case 0x15:
|
|
filter.writeFC_LO(bus_value);
|
|
break;
|
|
case 0x16:
|
|
filter.writeFC_HI(bus_value);
|
|
break;
|
|
case 0x17:
|
|
filter.writeRES_FILT(bus_value);
|
|
break;
|
|
case 0x18:
|
|
filter.writeMODE_VOL(bus_value);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Tell clock() that the pipeline is empty.
|
|
write_pipeline = 0;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Constructor.
|
|
// ----------------------------------------------------------------------------
|
|
SID::State::State()
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 0x20; i++) {
|
|
sid_register[i] = 0;
|
|
}
|
|
|
|
bus_value = 0;
|
|
bus_value_ttl = 0;
|
|
write_pipeline = 0;
|
|
write_address = 0;
|
|
voice_mask = 0xff;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
accumulator[i] = 0;
|
|
shift_register[i] = 0x7fffff;
|
|
shift_register_reset[i] = 0;
|
|
shift_pipeline[i] = 0;
|
|
pulse_output[i] = 0;
|
|
floating_output_ttl[i] = 0;
|
|
|
|
rate_counter[i] = 0;
|
|
rate_counter_period[i] = 9;
|
|
exponential_counter[i] = 0;
|
|
exponential_counter_period[i] = 1;
|
|
envelope_counter[i] = 0;
|
|
envelope_state[i] = EnvelopeGenerator::RELEASE;
|
|
hold_zero[i] = true;
|
|
envelope_pipeline[i] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Read state.
|
|
// ----------------------------------------------------------------------------
|
|
SID::State SID::read_state()
|
|
{
|
|
State state;
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < 3; i++, j += 7) {
|
|
WaveformGenerator& wave = voice[i].wave;
|
|
EnvelopeGenerator& envelope = voice[i].envelope;
|
|
state.sid_register[j + 0] = wave.freq & 0xff;
|
|
state.sid_register[j + 1] = wave.freq >> 8;
|
|
state.sid_register[j + 2] = wave.pw & 0xff;
|
|
state.sid_register[j + 3] = wave.pw >> 8;
|
|
state.sid_register[j + 4] =
|
|
(wave.waveform << 4)
|
|
| (wave.test ? 0x08 : 0)
|
|
| (wave.ring_mod ? 0x04 : 0)
|
|
| (wave.sync ? 0x02 : 0)
|
|
| (envelope.gate ? 0x01 : 0);
|
|
state.sid_register[j + 5] = (envelope.attack << 4) | envelope.decay;
|
|
state.sid_register[j + 6] = (envelope.sustain << 4) | envelope.release;
|
|
}
|
|
|
|
state.sid_register[j++] = filter.fc & 0x007;
|
|
state.sid_register[j++] = filter.fc >> 3;
|
|
state.sid_register[j++] = (filter.res << 4) | filter.filt;
|
|
state.sid_register[j++] = filter.mode | filter.vol;
|
|
|
|
// These registers are superfluous, but are included for completeness.
|
|
for (; j < 0x1d; j++) {
|
|
state.sid_register[j] = read(j);
|
|
}
|
|
for (; j < 0x20; j++) {
|
|
state.sid_register[j] = 0;
|
|
}
|
|
|
|
state.bus_value = bus_value;
|
|
state.bus_value_ttl = bus_value_ttl;
|
|
state.write_pipeline = write_pipeline;
|
|
state.write_address = write_address;
|
|
state.voice_mask = filter.voice_mask;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
state.accumulator[i] = voice[i].wave.accumulator;
|
|
state.shift_register[i] = voice[i].wave.shift_register;
|
|
state.shift_register_reset[i] = voice[i].wave.shift_register_reset;
|
|
state.shift_pipeline[i] = voice[i].wave.shift_pipeline;
|
|
state.pulse_output[i] = voice[i].wave.pulse_output;
|
|
state.floating_output_ttl[i] = voice[i].wave.floating_output_ttl;
|
|
|
|
state.rate_counter[i] = voice[i].envelope.rate_counter;
|
|
state.rate_counter_period[i] = voice[i].envelope.rate_period;
|
|
state.exponential_counter[i] = voice[i].envelope.exponential_counter;
|
|
state.exponential_counter_period[i] = voice[i].envelope.exponential_counter_period;
|
|
state.envelope_counter[i] = voice[i].envelope.envelope_counter;
|
|
state.envelope_state[i] = voice[i].envelope.state;
|
|
state.hold_zero[i] = voice[i].envelope.hold_zero;
|
|
state.envelope_pipeline[i] = voice[i].envelope.envelope_pipeline;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Write state.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::write_state(const State& state)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= 0x18; i++) {
|
|
write(i, state.sid_register[i]);
|
|
}
|
|
|
|
bus_value = state.bus_value;
|
|
bus_value_ttl = state.bus_value_ttl;
|
|
write_pipeline = state.write_pipeline;
|
|
write_address = state.write_address;
|
|
filter.set_voice_mask(state.voice_mask);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
voice[i].wave.accumulator = state.accumulator[i];
|
|
voice[i].wave.shift_register = state.shift_register[i];
|
|
voice[i].wave.shift_register_reset = state.shift_register_reset[i];
|
|
voice[i].wave.shift_pipeline = state.shift_pipeline[i];
|
|
voice[i].wave.pulse_output = state.pulse_output[i];
|
|
voice[i].wave.floating_output_ttl = state.floating_output_ttl[i];
|
|
|
|
voice[i].envelope.rate_counter = state.rate_counter[i];
|
|
voice[i].envelope.rate_period = state.rate_counter_period[i];
|
|
voice[i].envelope.exponential_counter = state.exponential_counter[i];
|
|
voice[i].envelope.exponential_counter_period = state.exponential_counter_period[i];
|
|
voice[i].envelope.envelope_counter = state.envelope_counter[i];
|
|
voice[i].envelope.state = state.envelope_state[i];
|
|
voice[i].envelope.hold_zero = state.hold_zero[i];
|
|
voice[i].envelope.envelope_pipeline = state.envelope_pipeline[i];
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Mask for voices routed into the filter / audio output stage.
|
|
// Used to physically connect/disconnect EXT IN, and for test purposed
|
|
// (voice muting).
|
|
// ----------------------------------------------------------------------------
|
|
void SID::set_voice_mask(reg4 mask)
|
|
{
|
|
filter.set_voice_mask(mask);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Enable filter.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::enable_filter(bool enable)
|
|
{
|
|
filter.enable_filter(enable);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Adjust the DAC bias parameter of the filter.
|
|
// This gives user variable control of the exact CF -> center frequency
|
|
// mapping used by the filter.
|
|
// The setting is currently only effective for 6581.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::adjust_filter_bias(double dac_bias) {
|
|
filter.adjust_filter_bias(dac_bias);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Enable external filter.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::enable_external_filter(bool enable)
|
|
{
|
|
extfilt.enable_filter(enable);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// I0() computes the 0th order modified Bessel function of the first kind.
|
|
// This function is originally from resample-1.5/filterkit.c by J. O. Smith.
|
|
// ----------------------------------------------------------------------------
|
|
double SID::I0(double x)
|
|
{
|
|
// Max error acceptable in I0.
|
|
const double I0e = 1e-6;
|
|
|
|
double sum, u, halfx, temp;
|
|
int n;
|
|
|
|
sum = u = n = 1;
|
|
halfx = x/2.0;
|
|
|
|
do {
|
|
temp = halfx/n++;
|
|
u *= temp*temp;
|
|
sum += u;
|
|
} while (u >= I0e*sum);
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Setting of SID sampling parameters.
|
|
//
|
|
// Use a clock freqency of 985248Hz for PAL C64, 1022730Hz for NTSC C64.
|
|
// The default end of passband frequency is pass_freq = 0.9*sample_freq/2
|
|
// for sample frequencies up to ~ 44.1kHz, and 20kHz for higher sample
|
|
// frequencies.
|
|
//
|
|
// For resampling, the ratio between the clock frequency and the sample
|
|
// frequency is limited as follows:
|
|
// 125*clock_freq/sample_freq < 16384
|
|
// E.g. provided a clock frequency of ~ 1MHz, the sample frequency can not
|
|
// be set lower than ~ 8kHz. A lower sample frequency would make the
|
|
// resampling code overfill its 16k sample ring buffer.
|
|
//
|
|
// The end of passband frequency is also limited:
|
|
// pass_freq <= 0.9*sample_freq/2
|
|
|
|
// E.g. for a 44.1kHz sampling rate the end of passband frequency is limited
|
|
// to slightly below 20kHz. This constraint ensures that the FIR table is
|
|
// not overfilled.
|
|
// ----------------------------------------------------------------------------
|
|
bool SID::set_sampling_parameters(double clock_freq, sampling_method method,
|
|
double sample_freq, double pass_freq,
|
|
double filter_scale)
|
|
{
|
|
// Check resampling constraints.
|
|
if (method == SAMPLE_RESAMPLE || method == SAMPLE_RESAMPLE_FASTMEM)
|
|
{
|
|
// Check whether the sample ring buffer would overfill.
|
|
if (FIR_N*clock_freq/sample_freq >= RINGSIZE) {
|
|
return false;
|
|
}
|
|
|
|
// The default passband limit is 0.9*sample_freq/2 for sample
|
|
// frequencies below ~ 44.1kHz, and 20kHz for higher sample frequencies.
|
|
if (pass_freq < 0) {
|
|
pass_freq = 20000;
|
|
if (2*pass_freq/sample_freq >= 0.9) {
|
|
pass_freq = 0.9*sample_freq/2;
|
|
}
|
|
}
|
|
// Check whether the FIR table would overfill.
|
|
else if (pass_freq > 0.9*sample_freq/2) {
|
|
return false;
|
|
}
|
|
|
|
// The filter scaling is only included to avoid clipping, so keep
|
|
// it sane.
|
|
if (filter_scale < 0.9 || filter_scale > 1.0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
clock_frequency = clock_freq;
|
|
sampling = method;
|
|
|
|
cycles_per_sample =
|
|
cycle_count(clock_freq/sample_freq*(1 << FIXP_SHIFT) + 0.5);
|
|
|
|
sample_offset = 0;
|
|
sample_prev = 0;
|
|
sample_now = 0;
|
|
|
|
// FIR initialization is only necessary for resampling.
|
|
if (method != SAMPLE_RESAMPLE && method != SAMPLE_RESAMPLE_FASTMEM)
|
|
{
|
|
delete[] sample;
|
|
delete[] fir;
|
|
sample = 0;
|
|
fir = 0;
|
|
return true;
|
|
}
|
|
|
|
// Allocate sample buffer.
|
|
if (!sample) {
|
|
sample = new short[RINGSIZE*2];
|
|
}
|
|
// Clear sample buffer.
|
|
for (int j = 0; j < RINGSIZE*2; j++) {
|
|
sample[j] = 0;
|
|
}
|
|
sample_index = 0;
|
|
|
|
const double pi = 3.1415926535897932385;
|
|
|
|
// 16 bits -> -96dB stopband attenuation.
|
|
const double A = -20*log10(1.0/(1 << 16));
|
|
// A fraction of the bandwidth is allocated to the transition band,
|
|
double dw = (1 - 2*pass_freq/sample_freq)*pi*2;
|
|
// The cutoff frequency is midway through the transition band (nyquist)
|
|
double wc = pi;
|
|
|
|
// For calculation of beta and N see the reference for the kaiserord
|
|
// function in the MATLAB Signal Processing Toolbox:
|
|
// http://www.mathworks.com/access/helpdesk/help/toolbox/signal/kaiserord.html
|
|
const double beta = 0.1102*(A - 8.7);
|
|
const double I0beta = I0(beta);
|
|
|
|
// The filter order will maximally be 124 with the current constraints.
|
|
// N >= (96.33 - 7.95)/(2.285*0.1*pi) -> N >= 123
|
|
// The filter order is equal to the number of zero crossings, i.e.
|
|
// it should be an even number (sinc is symmetric about x = 0).
|
|
int N = int((A - 7.95)/(2.285*dw) + 0.5);
|
|
N += N & 1;
|
|
|
|
double f_samples_per_cycle = sample_freq/clock_freq;
|
|
double f_cycles_per_sample = clock_freq/sample_freq;
|
|
|
|
// The filter length is equal to the filter order + 1.
|
|
// The filter length must be an odd number (sinc is symmetric about x = 0).
|
|
int fir_N_new = int(N*f_cycles_per_sample) + 1;
|
|
fir_N_new |= 1;
|
|
|
|
// We clamp the filter table resolution to 2^n, making the fixed point
|
|
// sample_offset a whole multiple of the filter table resolution.
|
|
int res = method == SAMPLE_RESAMPLE ?
|
|
FIR_RES : FIR_RES_FASTMEM;
|
|
int n = (int)ceil(log(res/f_cycles_per_sample)/log(2.0f));
|
|
int fir_RES_new = 1 << n;
|
|
|
|
/* Determine if we need to recalculate table, or whether we can reuse earlier cached copy.
|
|
* This pays off on slow hardware such as current Android devices.
|
|
*/
|
|
if (fir && fir_RES_new == fir_RES && fir_N_new == fir_N && beta == fir_beta && f_cycles_per_sample == fir_f_cycles_per_sample && fir_filter_scale == filter_scale) {
|
|
return true;
|
|
}
|
|
fir_RES = fir_RES_new;
|
|
fir_N = fir_N_new;
|
|
fir_beta = beta;
|
|
fir_f_cycles_per_sample = f_cycles_per_sample;
|
|
fir_filter_scale = filter_scale;
|
|
|
|
// Allocate memory for FIR tables.
|
|
delete[] fir;
|
|
fir = new short[fir_N*fir_RES];
|
|
|
|
// Calculate fir_RES FIR tables for linear interpolation.
|
|
for (int i = 0; i < fir_RES; i++) {
|
|
int fir_offset = i*fir_N + fir_N/2;
|
|
double j_offset = double(i)/fir_RES;
|
|
// Calculate FIR table. This is the sinc function, weighted by the
|
|
// Kaiser window.
|
|
for (int j = -fir_N/2; j <= fir_N/2; j++) {
|
|
double jx = j - j_offset;
|
|
double wt = wc*jx/f_cycles_per_sample;
|
|
double temp = jx/(fir_N/2);
|
|
double Kaiser =
|
|
fabs(temp) <= 1 ? I0(beta*sqrt(1 - temp*temp))/I0beta : 0;
|
|
double sincwt =
|
|
fabs(wt) >= 1e-6 ? sin(wt)/wt : 1;
|
|
double val =
|
|
(1 << FIR_SHIFT)*filter_scale*f_samples_per_cycle*wc/pi*sincwt*Kaiser;
|
|
fir[fir_offset + j] = (short)round(val);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Adjustment of SID sampling frequency.
|
|
//
|
|
// In some applications, e.g. a C64 emulator, it can be desirable to
|
|
// synchronize sound with a timer source. This is supported by adjustment of
|
|
// the SID sampling frequency.
|
|
//
|
|
// NB! Adjustment of the sampling frequency may lead to noticeable shifts in
|
|
// frequency, and should only be used for interactive applications. Note also
|
|
// that any adjustment of the sampling frequency will change the
|
|
// characteristics of the resampling filter, since the filter is not rebuilt.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::adjust_sampling_frequency(double sample_freq)
|
|
{
|
|
cycles_per_sample =
|
|
cycle_count(clock_frequency/sample_freq*(1 << FIXP_SHIFT) + 0.5);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking - delta_t cycles.
|
|
// ----------------------------------------------------------------------------
|
|
void SID::clock(cycle_count delta_t)
|
|
{
|
|
int i;
|
|
|
|
// Pipelined writes on the MOS8580.
|
|
if (unlikely(write_pipeline) && likely(delta_t > 0)) {
|
|
// Step one cycle by a recursive call to ourselves.
|
|
write_pipeline = 0;
|
|
clock(1);
|
|
write();
|
|
delta_t -= 1;
|
|
}
|
|
|
|
if (unlikely(delta_t <= 0)) {
|
|
return;
|
|
}
|
|
|
|
// Age bus value.
|
|
bus_value_ttl -= delta_t;
|
|
if (unlikely(bus_value_ttl <= 0)) {
|
|
bus_value = 0;
|
|
bus_value_ttl = 0;
|
|
}
|
|
|
|
// Clock amplitude modulators.
|
|
for (i = 0; i < 3; i++) {
|
|
voice[i].envelope.clock(delta_t);
|
|
}
|
|
|
|
// Clock and synchronize oscillators.
|
|
// Loop until we reach the current cycle.
|
|
cycle_count delta_t_osc = delta_t;
|
|
while (delta_t_osc) {
|
|
cycle_count delta_t_min = delta_t_osc;
|
|
|
|
// Find minimum number of cycles to an oscillator accumulator MSB toggle.
|
|
// We have to clock on each MSB on / MSB off for hard sync to operate
|
|
// correctly.
|
|
for (i = 0; i < 3; i++) {
|
|
WaveformGenerator& wave = voice[i].wave;
|
|
|
|
// It is only necessary to clock on the MSB of an oscillator that is
|
|
// a sync source and has freq != 0.
|
|
if (likely(!(wave.sync_dest->sync && wave.freq))) {
|
|
continue;
|
|
}
|
|
|
|
reg16 freq = wave.freq;
|
|
reg24 accumulator = wave.accumulator;
|
|
|
|
// Clock on MSB off if MSB is on, clock on MSB on if MSB is off.
|
|
reg24 delta_accumulator =
|
|
(accumulator & 0x800000 ? 0x1000000 : 0x800000) - accumulator;
|
|
|
|
cycle_count delta_t_next = delta_accumulator/freq;
|
|
if (likely(delta_accumulator%freq)) {
|
|
++delta_t_next;
|
|
}
|
|
|
|
if (unlikely(delta_t_next < delta_t_min)) {
|
|
delta_t_min = delta_t_next;
|
|
}
|
|
}
|
|
|
|
// Clock oscillators.
|
|
for (i = 0; i < 3; i++) {
|
|
voice[i].wave.clock(delta_t_min);
|
|
}
|
|
|
|
// Synchronize oscillators.
|
|
for (i = 0; i < 3; i++) {
|
|
voice[i].wave.synchronize();
|
|
}
|
|
|
|
delta_t_osc -= delta_t_min;
|
|
}
|
|
|
|
// Calculate waveform output.
|
|
for (i = 0; i < 3; i++) {
|
|
voice[i].wave.set_waveform_output(delta_t);
|
|
}
|
|
|
|
// Clock filter.
|
|
filter.clock(delta_t,
|
|
voice[0].output(), voice[1].output(), voice[2].output());
|
|
|
|
// Clock external filter.
|
|
extfilt.clock(delta_t, filter.output());
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking with audio sampling.
|
|
// Fixed point arithmetics are used.
|
|
//
|
|
// The example below shows how to clock the SID a specified amount of cycles
|
|
// while producing audio output:
|
|
//
|
|
// while (delta_t) {
|
|
// bufindex += sid.clock(delta_t, buf + bufindex, buflength - bufindex);
|
|
// write(dsp, buf, bufindex*2);
|
|
// bufindex = 0;
|
|
// }
|
|
//
|
|
// ----------------------------------------------------------------------------
|
|
int SID::clock(cycle_count& delta_t, short* buf, int n, int interleave)
|
|
{
|
|
switch (sampling) {
|
|
default:
|
|
case SAMPLE_FAST:
|
|
return clock_fast(delta_t, buf, n, interleave);
|
|
case SAMPLE_INTERPOLATE:
|
|
return clock_interpolate(delta_t, buf, n, interleave);
|
|
case SAMPLE_RESAMPLE:
|
|
return clock_resample(delta_t, buf, n, interleave);
|
|
case SAMPLE_RESAMPLE_FASTMEM:
|
|
return clock_resample_fastmem(delta_t, buf, n, interleave);
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking with audio sampling - delta clocking picking nearest sample.
|
|
// ----------------------------------------------------------------------------
|
|
int SID::clock_fast(cycle_count& delta_t, short* buf, int n,
|
|
int interleave)
|
|
{
|
|
int s;
|
|
|
|
for (s = 0; s < n; s++) {
|
|
cycle_count next_sample_offset = sample_offset + cycles_per_sample + (1 << (FIXP_SHIFT - 1));
|
|
cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
|
|
|
|
if (delta_t_sample > delta_t) {
|
|
delta_t_sample = delta_t;
|
|
}
|
|
|
|
clock(delta_t_sample);
|
|
|
|
if ((delta_t -= delta_t_sample) == 0) {
|
|
sample_offset -= delta_t_sample << FIXP_SHIFT;
|
|
break;
|
|
}
|
|
|
|
sample_offset = (next_sample_offset & FIXP_MASK) - (1 << (FIXP_SHIFT - 1));
|
|
buf[s*interleave] = output();
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking with audio sampling - cycle based with linear sample
|
|
// interpolation.
|
|
//
|
|
// Here the chip is clocked every cycle. This yields higher quality
|
|
// sound since the samples are linearly interpolated, and since the
|
|
// external filter attenuates frequencies above 16kHz, thus reducing
|
|
// sampling noise.
|
|
// ----------------------------------------------------------------------------
|
|
int SID::clock_interpolate(cycle_count& delta_t, short* buf, int n,
|
|
int interleave)
|
|
{
|
|
int s;
|
|
|
|
for (s = 0; s < n; s++) {
|
|
cycle_count next_sample_offset = sample_offset + cycles_per_sample;
|
|
cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
|
|
|
|
if (delta_t_sample > delta_t) {
|
|
delta_t_sample = delta_t;
|
|
}
|
|
|
|
for (int i = delta_t_sample; i > 0; i--) {
|
|
clock();
|
|
if (unlikely(i <= 2)) {
|
|
sample_prev = sample_now;
|
|
sample_now = output();
|
|
}
|
|
}
|
|
|
|
if ((delta_t -= delta_t_sample) == 0) {
|
|
sample_offset -= delta_t_sample << FIXP_SHIFT;
|
|
break;
|
|
}
|
|
|
|
sample_offset = next_sample_offset & FIXP_MASK;
|
|
|
|
buf[s*interleave] =
|
|
sample_prev + (sample_offset*(sample_now - sample_prev) >> FIXP_SHIFT);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking with audio sampling - cycle based with audio resampling.
|
|
//
|
|
// This is the theoretically correct (and computationally intensive) audio
|
|
// sample generation. The samples are generated by resampling to the specified
|
|
// sampling frequency. The work rate is inversely proportional to the
|
|
// percentage of the bandwidth allocated to the filter transition band.
|
|
//
|
|
// This implementation is based on the paper "A Flexible Sampling-Rate
|
|
// Conversion Method", by J. O. Smith and P. Gosset, or rather on the
|
|
// expanded tutorial on the "Digital Audio Resampling Home Page":
|
|
// http://www-ccrma.stanford.edu/~jos/resample/
|
|
//
|
|
// By building shifted FIR tables with samples according to the
|
|
// sampling frequency, the implementation below dramatically reduces the
|
|
// computational effort in the filter convolutions, without any loss
|
|
// of accuracy. The filter convolutions are also vectorizable on
|
|
// current hardware.
|
|
//
|
|
// Further possible optimizations are:
|
|
// * An equiripple filter design could yield a lower filter order, see
|
|
// http://www.mwrf.com/Articles/ArticleID/7229/7229.html
|
|
// * The Convolution Theorem could be used to bring the complexity of
|
|
// convolution down from O(n*n) to O(n*log(n)) using the Fast Fourier
|
|
// Transform, see http://en.wikipedia.org/wiki/Convolution_theorem
|
|
// * Simply resampling in two steps can also yield computational
|
|
// savings, since the transition band will be wider in the first step
|
|
// and the required filter order is thus lower in this step.
|
|
// Laurent Ganier has found the optimal intermediate sampling frequency
|
|
// to be (via derivation of sum of two steps):
|
|
// 2 * pass_freq + sqrt [ 2 * pass_freq * orig_sample_freq
|
|
// * (dest_sample_freq - 2 * pass_freq) / dest_sample_freq ]
|
|
//
|
|
// NB! the result of right shifting negative numbers is really
|
|
// implementation dependent in the C++ standard.
|
|
// ----------------------------------------------------------------------------
|
|
int SID::clock_resample(cycle_count& delta_t, short* buf, int n,
|
|
int interleave)
|
|
{
|
|
int s;
|
|
|
|
for (s = 0; s < n; s++) {
|
|
cycle_count next_sample_offset = sample_offset + cycles_per_sample;
|
|
cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
|
|
|
|
if (delta_t_sample > delta_t) {
|
|
delta_t_sample = delta_t;
|
|
}
|
|
|
|
for (int i = 0; i < delta_t_sample; i++) {
|
|
clock();
|
|
sample[sample_index] = sample[sample_index + RINGSIZE] = output();
|
|
++sample_index &= RINGMASK;
|
|
}
|
|
|
|
if ((delta_t -= delta_t_sample) == 0) {
|
|
sample_offset -= delta_t_sample << FIXP_SHIFT;
|
|
break;
|
|
}
|
|
|
|
sample_offset = next_sample_offset & FIXP_MASK;
|
|
|
|
int fir_offset = sample_offset*fir_RES >> FIXP_SHIFT;
|
|
int fir_offset_rmd = sample_offset*fir_RES & FIXP_MASK;
|
|
short* fir_start = fir + fir_offset*fir_N;
|
|
short* sample_start = sample + sample_index - fir_N - 1 + RINGSIZE;
|
|
|
|
// Convolution with filter impulse response.
|
|
int v1 = 0;
|
|
for (int j = 0; j < fir_N; j++) {
|
|
v1 += sample_start[j]*fir_start[j];
|
|
}
|
|
|
|
// Use next FIR table, wrap around to first FIR table using
|
|
// next sample.
|
|
if (unlikely(++fir_offset == fir_RES)) {
|
|
fir_offset = 0;
|
|
++sample_start;
|
|
}
|
|
fir_start = fir + fir_offset*fir_N;
|
|
|
|
// Convolution with filter impulse response.
|
|
int v2 = 0;
|
|
for (int k = 0; k < fir_N; k++) {
|
|
v2 += sample_start[k]*fir_start[k];
|
|
}
|
|
|
|
// Linear interpolation.
|
|
// fir_offset_rmd is equal for all samples, it can thus be factorized out:
|
|
// sum(v1 + rmd*(v2 - v1)) = sum(v1) + rmd*(sum(v2) - sum(v1))
|
|
int v = v1 + (fir_offset_rmd*(v2 - v1) >> FIXP_SHIFT);
|
|
|
|
v >>= FIR_SHIFT;
|
|
|
|
// Saturated arithmetics to guard against 16 bit sample overflow.
|
|
const int half = 1 << 15;
|
|
if (v >= half) {
|
|
v = half - 1;
|
|
}
|
|
else if (v < -half) {
|
|
v = -half;
|
|
}
|
|
|
|
buf[s*interleave] = v;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking with audio sampling - cycle based with audio resampling.
|
|
// ----------------------------------------------------------------------------
|
|
int SID::clock_resample_fastmem(cycle_count& delta_t, short* buf, int n,
|
|
int interleave)
|
|
{
|
|
int s;
|
|
|
|
for (s = 0; s < n; s++) {
|
|
cycle_count next_sample_offset = sample_offset + cycles_per_sample;
|
|
cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
|
|
|
|
if (delta_t_sample > delta_t) {
|
|
delta_t_sample = delta_t;
|
|
}
|
|
|
|
for (int i = 0; i < delta_t_sample; i++) {
|
|
clock();
|
|
sample[sample_index] = sample[sample_index + RINGSIZE] = output();
|
|
++sample_index &= RINGMASK;
|
|
}
|
|
|
|
if ((delta_t -= delta_t_sample) == 0) {
|
|
sample_offset -= delta_t_sample << FIXP_SHIFT;
|
|
break;
|
|
}
|
|
|
|
sample_offset = next_sample_offset & FIXP_MASK;
|
|
|
|
int fir_offset = sample_offset*fir_RES >> FIXP_SHIFT;
|
|
short* fir_start = fir + fir_offset*fir_N;
|
|
short* sample_start = sample + sample_index - fir_N + RINGSIZE;
|
|
|
|
// Convolution with filter impulse response.
|
|
int v = 0;
|
|
for (int j = 0; j < fir_N; j++) {
|
|
v += sample_start[j]*fir_start[j];
|
|
}
|
|
|
|
v >>= FIR_SHIFT;
|
|
|
|
// Saturated arithmetics to guard against 16 bit sample overflow.
|
|
const int half = 1 << 15;
|
|
if (v >= half) {
|
|
v = half - 1;
|
|
}
|
|
else if (v < -half) {
|
|
v = -half;
|
|
}
|
|
|
|
buf[s*interleave] = v;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
} // namespace reSID
|