cog/Audio/Chain/HeadphoneFilter.mm

448 lines
13 KiB
Plaintext

//
// HeadphoneFilter.m
// CogAudio Framework
//
// Created by Christopher Snowhill on 1/24/22.
//
#import "HeadphoneFilter.h"
#import "AudioChunk.h"
#import "AudioDecoder.h"
#import "AudioSource.h"
#import <stdlib.h>
#import "r8bstate.h"
#import "lpc.h"
#import "util.h"
#import "pffft_double.h"
@implementation HeadphoneFilter
enum {
speaker_is_back_center = -1,
speaker_not_present = -2,
};
static const uint32_t max_speaker_index = 10;
static const int8_t speakers_to_hesuvi_7[11][2] = {
// front left
{ 0, 1 },
// front right
{ 1, 0 },
// front center
{ 6, 6 },
// lfe
{ 6, 6 },
// back left
{ 4, 5 },
// back right
{ 5, 4 },
// front center left
{ speaker_not_present, speaker_not_present },
// front center right
{ speaker_not_present, speaker_not_present },
// back center
{ speaker_is_back_center, speaker_is_back_center },
// side left
{ 2, 3 },
// side right
{ 3, 2 }
};
static const int8_t speakers_to_hesuvi_14[11][2] = {
// front left
{ 0, 1 },
// front right
{ 8, 7 },
// front center
{ 6, 13 },
// lfe
{ 6, 13 },
// back left
{ 4, 5 },
// back right
{ 12, 11 },
// front center left
{ speaker_not_present, speaker_not_present },
// front center right
{ speaker_not_present, speaker_not_present },
// back center
{ speaker_is_back_center, speaker_is_back_center },
// side left
{ 2, 3 },
// side right
{ 10, 9 }
};
+ (BOOL)validateImpulseFile:(NSURL *)url {
id<CogSource> source = [AudioSource audioSourceForURL:url];
if(!source)
return NO;
if(![source open:url])
return NO;
id<CogDecoder> decoder = [AudioDecoder audioDecoderForSource:source];
if(decoder == nil) {
[source close];
source = nil;
return NO;
}
if(![decoder open:source]) {
decoder = nil;
[source close];
source = nil;
return NO;
}
NSDictionary *properties = [decoder properties];
[decoder close];
decoder = nil;
[source close];
source = nil;
int impulseChannels = [[properties objectForKey:@"channels"] intValue];
if([[properties objectForKey:@"floatingPoint"] boolValue] != YES ||
[[properties objectForKey:@"bitsPerSample"] intValue] != 32 ||
!([[properties objectForKey:@"endian"] isEqualToString:@"host"] ||
[[properties objectForKey:@"endian"] isEqualToString:@"little"]) ||
(impulseChannels != 14 && impulseChannels != 7))
return NO;
return YES;
}
- (id)initWithImpulseFile:(NSURL *)url forSampleRate:(double)sampleRate withInputChannels:(size_t)channels withConfig:(uint32_t)config {
self = [super init];
if(self) {
id<CogSource> source = [AudioSource audioSourceForURL:url];
if(!source)
return nil;
if(![source open:url])
return nil;
id<CogDecoder> decoder = [AudioDecoder audioDecoderForSource:source];
if(decoder == nil) {
[source close];
source = nil;
return nil;
}
if(![decoder open:source]) {
decoder = nil;
[source close];
source = nil;
return nil;
}
NSDictionary *properties = [decoder properties];
double sampleRateOfSource = [[properties objectForKey:@"sampleRate"] doubleValue];
int sampleCount = [[properties objectForKey:@"totalFrames"] intValue];
int impulseChannels = [[properties objectForKey:@"channels"] intValue];
if([[properties objectForKey:@"floatingPoint"] boolValue] != YES ||
[[properties objectForKey:@"bitsPerSample"] intValue] != 32 ||
!([[properties objectForKey:@"endian"] isEqualToString:@"host"] ||
[[properties objectForKey:@"endian"] isEqualToString:@"little"]) ||
(impulseChannels != 14 && impulseChannels != 7)) {
[decoder close];
decoder = nil;
[source close];
source = nil;
return nil;
}
float *impulseBuffer = (float *)pffft_aligned_malloc(sampleCount * sizeof(float) * impulseChannels);
if(!impulseBuffer) {
[decoder close];
decoder = nil;
[source close];
source = nil;
return nil;
}
if([decoder readAudio:impulseBuffer frames:sampleCount] != sampleCount) {
pffft_aligned_free(impulseBuffer);
[decoder close];
decoder = nil;
[source close];
source = nil;
return nil;
}
[decoder close];
decoder = nil;
[source close];
source = nil;
if(sampleRateOfSource != sampleRate) {
double sampleRatio = sampleRate / sampleRateOfSource;
int resampledCount = (int)ceil((double)sampleCount * sampleRatio);
r8bstate *_r8bstate = new r8bstate(impulseChannels, 1024, sampleRateOfSource, sampleRate);
unsigned long PRIME_LEN_ = MAX(sampleRateOfSource / 20, 1024u);
PRIME_LEN_ = MIN(PRIME_LEN_, 16384u);
PRIME_LEN_ = MAX(PRIME_LEN_, 2 * LPC_ORDER + 1);
unsigned int N_samples_to_add_ = sampleRateOfSource;
unsigned int N_samples_to_drop_ = sampleRate;
samples_len(&N_samples_to_add_, &N_samples_to_drop_, 20, 8192u);
int resamplerLatencyIn = (int)N_samples_to_add_;
int resamplerLatencyOut = (int)N_samples_to_drop_;
float *tempImpulse = (float *)pffft_aligned_malloc((sampleCount + resamplerLatencyIn * 2 + 1024) * sizeof(float) * impulseChannels);
if(!tempImpulse) {
pffft_aligned_free(impulseBuffer);
return nil;
}
resampledCount += resamplerLatencyOut * 2 + 1024;
float *resampledImpulse = (float *)pffft_aligned_malloc(resampledCount * sizeof(float) * impulseChannels);
if(!resampledImpulse) {
pffft_aligned_free(impulseBuffer);
pffft_aligned_free(tempImpulse);
return nil;
}
size_t prime = MIN(sampleCount, PRIME_LEN_);
void *extrapolate_buffer = NULL;
size_t extrapolate_buffer_size = 0;
memcpy(tempImpulse + resamplerLatencyIn * impulseChannels, impulseBuffer, sampleCount * sizeof(float) * impulseChannels);
lpc_extrapolate_bkwd(tempImpulse + N_samples_to_add_ * impulseChannels, sampleCount, prime, impulseChannels, LPC_ORDER, N_samples_to_add_, &extrapolate_buffer, &extrapolate_buffer_size);
lpc_extrapolate_fwd(tempImpulse + N_samples_to_add_ * impulseChannels, sampleCount, prime, impulseChannels, LPC_ORDER, N_samples_to_add_, &extrapolate_buffer, &extrapolate_buffer_size);
free(extrapolate_buffer);
size_t inputDone = 0;
size_t outputDone = 0;
outputDone = _r8bstate->resample(tempImpulse, sampleCount + N_samples_to_add_ * 2, &inputDone, resampledImpulse, resampledCount);
if (outputDone < resampledCount) {
outputDone += _r8bstate->flush(resampledImpulse + outputDone * impulseChannels, resampledCount - outputDone);
}
delete _r8bstate;
outputDone -= N_samples_to_drop_ * 2;
memmove(resampledImpulse, resampledImpulse + N_samples_to_drop_ * impulseChannels, outputDone * sizeof(float) * impulseChannels);
pffft_aligned_free(tempImpulse);
pffft_aligned_free(impulseBuffer);
impulseBuffer = resampledImpulse;
sampleCount = (int)outputDone;
// Normalize resampled impulse by sample ratio
float fSampleRatio = (float)sampleRatio;
vDSP_vsdiv(impulseBuffer, 1, &fSampleRatio, impulseBuffer, 1, sampleCount * impulseChannels);
}
channelCount = channels;
bufferSize = 512;
fftSize = sampleCount + bufferSize;
fftSize = (size_t)pffftd_next_power_of_two((int)fftSize);
float *deinterleavedImpulseBuffer = (float *)pffft_aligned_malloc(fftSize * sizeof(float) * impulseChannels);
if(!deinterleavedImpulseBuffer) {
pffft_aligned_free(impulseBuffer);
return nil;
}
for(size_t i = 0; i < impulseChannels; ++i) {
cblas_scopy(sampleCount, impulseBuffer + i, impulseChannels, deinterleavedImpulseBuffer + i * fftSize, 1);
vDSP_vclr(deinterleavedImpulseBuffer + i * fftSize + sampleCount, 1, fftSize - sampleCount);
}
pffft_aligned_free(impulseBuffer);
paddedBufferSize = fftSize;
fftSetup = pffft_new_setup((int)fftSize, PFFFT_REAL);
if(!fftSetup) {
pffft_aligned_free(deinterleavedImpulseBuffer);
return nil;
}
workBuffer = (float *)pffft_aligned_malloc(sizeof(float) * fftSize);
if(!workBuffer) {
pffft_aligned_free(deinterleavedImpulseBuffer);
return nil;
}
paddedSignal = (float *)pffft_aligned_malloc(sizeof(float) * paddedBufferSize);
if(!paddedSignal) {
pffft_aligned_free(deinterleavedImpulseBuffer);
return nil;
}
impulse_responses = (float **)calloc(sizeof(float *), channels * 2);
if(!impulse_responses) {
pffft_aligned_free(deinterleavedImpulseBuffer);
return nil;
}
for(size_t i = 0; i < channels; ++i) {
impulse_responses[i * 2 + 0] = (float *)pffft_aligned_malloc(sizeof(float) * fftSize * 2);
impulse_responses[i * 2 + 1] = (float *)pffft_aligned_malloc(sizeof(float) * fftSize * 2);
if(!impulse_responses[i * 2 + 0] || !impulse_responses[i * 2 + 1]) {
pffft_aligned_free(deinterleavedImpulseBuffer);
return nil;
}
uint32_t channelFlag = [AudioChunk extractChannelFlag:(uint32_t)i fromConfig:config];
uint32_t channelIndex = [AudioChunk findChannelIndex:channelFlag];
int leftInChannel = speaker_not_present;
int rightInChannel = speaker_not_present;
if(impulseChannels == 7) {
if(channelIndex <= max_speaker_index) {
leftInChannel = speakers_to_hesuvi_7[channelIndex][0];
rightInChannel = speakers_to_hesuvi_7[channelIndex][1];
}
} else {
if(channelIndex <= max_speaker_index) {
leftInChannel = speakers_to_hesuvi_14[channelIndex][0];
rightInChannel = speakers_to_hesuvi_14[channelIndex][1];
}
}
if(leftInChannel == speaker_is_back_center || rightInChannel == speaker_is_back_center) {
if(impulseChannels == 7) {
cblas_scopy((int)fftSize, deinterleavedImpulseBuffer + 4 * fftSize, 1, impulse_responses[i * 2 + 0], 1);
vDSP_vadd(impulse_responses[i * 2 + 0], 1, deinterleavedImpulseBuffer + 5 * fftSize, 1, impulse_responses[i * 2 + 0], 1, fftSize);
cblas_scopy((int)fftSize, impulse_responses[i * 2 + 0], 1, impulse_responses[i * 2 + 1], 1);
} else {
cblas_scopy((int)fftSize, deinterleavedImpulseBuffer + 4 * fftSize, 1, impulse_responses[i * 2 + 0], 1);
vDSP_vadd(impulse_responses[i * 2 + 0], 1, deinterleavedImpulseBuffer + 12 * fftSize, 1, impulse_responses[i * 2 + 0], 1, fftSize);
cblas_scopy((int)fftSize, deinterleavedImpulseBuffer + 5 * fftSize, 1, impulse_responses[i * 2 + 1], 1);
vDSP_vadd(impulse_responses[i * 2 + 1], 1, deinterleavedImpulseBuffer + 11 * fftSize, 1, impulse_responses[i * 2 + 1], 1, fftSize);
}
} else if(leftInChannel == speaker_not_present || rightInChannel == speaker_not_present) {
vDSP_vclr(impulse_responses[i * 2 + 0], 1, fftSize);
vDSP_vclr(impulse_responses[i * 2 + 1], 1, fftSize);
} else {
cblas_scopy((int)fftSize, deinterleavedImpulseBuffer + leftInChannel * fftSize, 1, impulse_responses[i * 2 + 0], 1);
cblas_scopy((int)fftSize, deinterleavedImpulseBuffer + rightInChannel * fftSize, 1, impulse_responses[i * 2 + 1], 1);
}
pffft_transform(fftSetup, impulse_responses[i * 2 + 0], impulse_responses[i * 2 + 0], workBuffer, PFFFT_FORWARD);
pffft_transform(fftSetup, impulse_responses[i * 2 + 1], impulse_responses[i * 2 + 1], workBuffer, PFFFT_FORWARD);
}
pffft_aligned_free(deinterleavedImpulseBuffer);
left_result = (float *)pffft_aligned_malloc(sizeof(float) * fftSize);
right_result = (float *)pffft_aligned_malloc(sizeof(float) * fftSize);
if(!left_result || !right_result)
return nil;
prevInputs = (float **)calloc(sizeof(float *), channels);
if(!prevInputs) {
return nil;
}
for(size_t i = 0; i < channels; ++i) {
prevInputs[i] = (float *)pffft_aligned_malloc(sizeof(float) * fftSize);
if(!prevInputs[i]) {
return nil;
}
vDSP_vclr(prevInputs[i], 1, fftSize);
}
}
return self;
}
- (void)dealloc {
if(fftSetup) pffft_destroy_setup(fftSetup);
pffft_aligned_free(workBuffer);
pffft_aligned_free(paddedSignal);
if(impulse_responses) {
for(size_t i = 0; i < channelCount * 2; ++i) {
pffft_aligned_free(impulse_responses[i]);
}
free(impulse_responses);
}
if(prevInputs) {
for(size_t i = 0; i < channelCount; ++i) {
pffft_aligned_free(prevInputs[i]);
}
free(prevInputs);
}
pffft_aligned_free(left_result);
pffft_aligned_free(right_result);
}
- (void)process:(const float *)inBuffer sampleCount:(size_t)count toBuffer:(float *)outBuffer {
const float scale = 1.0 / ((float)fftSize);
while(count > 0) {
const size_t countToDo = (count > bufferSize) ? bufferSize : count;
const size_t outOffset = fftSize - countToDo;
vDSP_vclr(left_result, 1, fftSize);
vDSP_vclr(right_result, 1, fftSize);
for(size_t i = 0; i < channelCount; ++i) {
cblas_scopy((int)outOffset, prevInputs[i] + countToDo, 1, paddedSignal, 1);
cblas_scopy((int)countToDo, inBuffer + i, (int)channelCount, paddedSignal + outOffset, 1);
cblas_scopy((int)fftSize, paddedSignal, 1, prevInputs[i], 1);
pffft_transform(fftSetup, paddedSignal, paddedSignal, workBuffer, PFFFT_FORWARD);
pffft_zconvolve_accumulate(fftSetup, paddedSignal, impulse_responses[i * 2 + 0], left_result, 1.0);
pffft_zconvolve_accumulate(fftSetup, paddedSignal, impulse_responses[i * 2 + 1], right_result, 1.0);
}
pffft_transform(fftSetup, left_result, left_result, workBuffer, PFFFT_BACKWARD);
pffft_transform(fftSetup, right_result, right_result, workBuffer, PFFFT_BACKWARD);
vDSP_vsmul(left_result + outOffset, 1, &scale, left_result + outOffset, 1, countToDo);
vDSP_vsmul(right_result + outOffset, 1, &scale, right_result + outOffset, 1, countToDo);
cblas_scopy((int)countToDo, left_result + outOffset, 1, outBuffer + 0, 2);
cblas_scopy((int)countToDo, right_result + outOffset, 1, outBuffer + 1, 2);
inBuffer += countToDo * channelCount;
outBuffer += countToDo * 2;
count -= countToDo;
}
}
- (void)reset {
for(size_t i = 0; i < channelCount; ++i) {
vDSP_vclr(prevInputs[i], 1, fftSize);
}
}
@end