cog/Frameworks/OpenMPT.old/OpenMPT/soundlib/tuning.cpp

1011 lines
27 KiB
C++

/*
* tuning.cpp
* ----------
* Purpose: Alternative sample tuning.
* Notes : (currently none)
* Authors: OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "tuning.h"
#include "../common/mptIO.h"
#include "../common/serialization_utils.h"
#include "../common/misc_util.h"
#include <string>
#include <cmath>
OPENMPT_NAMESPACE_BEGIN
namespace Tuning {
static RATIOTYPE SanitizeGroupRatio(RATIOTYPE ratio)
{
return std::clamp(std::abs(ratio), 1e-15f, 1e+07f);
}
namespace CTuningS11n
{
void ReadStr(std::istream &iStrm, mpt::ustring &ustr, const std::size_t dummy, mpt::Charset charset);
void ReadNoteMap(std::istream &iStrm, std::map<NOTEINDEXTYPE, mpt::ustring> &m, const std::size_t dummy, mpt::Charset charset);
void ReadRatioTable(std::istream& iStrm, std::vector<RATIOTYPE>& v, const size_t);
void WriteNoteMap(std::ostream &oStrm, const std::map<NOTEINDEXTYPE, mpt::ustring> &m);
void WriteStr(std::ostream &oStrm, const mpt::ustring &ustr);
struct RatioWriter
{
RatioWriter(uint16 nWriteCount = s_nDefaultWriteCount) : m_nWriteCount(nWriteCount) {}
void operator()(std::ostream& oStrm, const std::vector<float>& v);
uint16 m_nWriteCount;
enum : uint16 { s_nDefaultWriteCount = (uint16_max >> 2) };
};
}
using namespace CTuningS11n;
/*
Version history:
4->5: Lots of changes, finestep interpretation revamp, fileformat revamp.
3->4: Changed sizetypes in serialisation from size_t(uint32) to
smaller types (uint8, USTEPTYPE) (March 2007)
*/
/*
Version changes:
3->4: Finetune related internal structure and serialization revamp.
2->3: The type for the size_type in the serialisation changed
from default(size_t, uint32) to unsigned STEPTYPE. (March 2007)
*/
static_assert(CTuning::s_RatioTableFineSizeMaxDefault < static_cast<USTEPINDEXTYPE>(FINESTEPCOUNT_MAX));
CTuning::CTuning()
: m_TuningType(Type::GENERAL)
, m_FineStepCount(0)
{
m_RatioTable.clear();
m_NoteMin = s_NoteMinDefault;
m_RatioTable.resize(s_RatioTableSizeDefault, 1);
m_GroupSize = 0;
m_GroupRatio = 0;
m_RatioTableFine.clear();
}
bool CTuning::CreateGroupGeometric(const NOTEINDEXTYPE &s, const RATIOTYPE &r, const NOTEINDEXTYPE &startindex)
{
if(s < 1 || !IsValidRatio(r) || startindex < GetNoteRange().first)
{
return false;
}
std::vector<RATIOTYPE> v;
v.reserve(s);
for(NOTEINDEXTYPE i = startindex; i < startindex + s; i++)
{
v.push_back(GetRatio(i));
}
return CreateGroupGeometric(v, r, GetNoteRange(), startindex);
}
bool CTuning::CreateGroupGeometric(const std::vector<RATIOTYPE> &v, const RATIOTYPE &r, const NoteRange &range, const NOTEINDEXTYPE &ratiostartpos)
{
if(range.first > range.last || v.size() == 0)
{
return false;
}
if(ratiostartpos < range.first || range.last < ratiostartpos || static_cast<UNOTEINDEXTYPE>(range.last - ratiostartpos) < static_cast<UNOTEINDEXTYPE>(v.size() - 1))
{
return false;
}
if(GetFineStepCount() > FINESTEPCOUNT_MAX)
{
return false;
}
for(size_t i = 0; i < v.size(); i++)
{
if(v[i] < 0)
{
return false;
}
}
if(r <= 0)
{
return false;
}
m_TuningType = Type::GROUPGEOMETRIC;
m_NoteMin = range.first;
m_GroupSize = mpt::saturate_cast<NOTEINDEXTYPE>(v.size());
m_GroupRatio = std::fabs(r);
m_RatioTable.resize(range.last - range.first + 1);
std::copy(v.begin(), v.end(), m_RatioTable.begin() + (ratiostartpos - range.first));
for(int32 i = ratiostartpos - 1; i >= m_NoteMin && ratiostartpos > NOTEINDEXTYPE_MIN; i--)
{
m_RatioTable[i - m_NoteMin] = m_RatioTable[i - m_NoteMin + m_GroupSize] / m_GroupRatio;
}
for(int32 i = ratiostartpos + m_GroupSize; i <= range.last && ratiostartpos <= (NOTEINDEXTYPE_MAX - m_GroupSize); i++)
{
m_RatioTable[i - m_NoteMin] = m_GroupRatio * m_RatioTable[i - m_NoteMin - m_GroupSize];
}
UpdateFineStepTable();
return true;
}
bool CTuning::CreateGeometric(const UNOTEINDEXTYPE &p, const RATIOTYPE &r)
{
return CreateGeometric(p, r, GetNoteRange());
}
bool CTuning::CreateGeometric(const UNOTEINDEXTYPE &s, const RATIOTYPE &r, const NoteRange &range)
{
if(range.first > range.last)
{
return false;
}
if(s < 1 || !IsValidRatio(r))
{
return false;
}
if(range.last - range.first + 1 > NOTEINDEXTYPE_MAX)
{
return false;
}
m_TuningType = Type::GEOMETRIC;
m_RatioTable.clear();
m_NoteMin = s_NoteMinDefault;
m_RatioTable.resize(s_RatioTableSizeDefault, static_cast<RATIOTYPE>(1.0));
m_GroupSize = 0;
m_GroupRatio = 0;
m_RatioTableFine.clear();
m_NoteMin = range.first;
m_GroupSize = mpt::saturate_cast<NOTEINDEXTYPE>(s);
m_GroupRatio = std::fabs(r);
const RATIOTYPE stepRatio = std::pow(m_GroupRatio, static_cast<RATIOTYPE>(1.0) / static_cast<RATIOTYPE>(m_GroupSize));
m_RatioTable.resize(range.last - range.first + 1);
for(int32 i = range.first; i <= range.last; i++)
{
m_RatioTable[i - m_NoteMin] = std::pow(stepRatio, static_cast<RATIOTYPE>(i));
}
UpdateFineStepTable();
return true;
}
mpt::ustring CTuning::GetNoteName(const NOTEINDEXTYPE &x, bool addOctave) const
{
if(!IsValidNote(x))
{
return mpt::ustring();
}
if(GetGroupSize() < 1)
{
const auto i = m_NoteNameMap.find(x);
if(i != m_NoteNameMap.end())
return i->second;
else
return mpt::ufmt::val(x);
}
else
{
const NOTEINDEXTYPE pos = static_cast<NOTEINDEXTYPE>(mpt::wrapping_modulo(x, m_GroupSize));
const NOTEINDEXTYPE middlePeriodNumber = 5;
mpt::ustring rValue;
const auto nmi = m_NoteNameMap.find(pos);
if(nmi != m_NoteNameMap.end())
{
rValue = nmi->second;
if(addOctave)
{
rValue += mpt::ufmt::val(middlePeriodNumber + mpt::wrapping_divide(x, m_GroupSize));
}
}
else
{
//By default, using notation nnP for notes; nn <-> note character starting
//from 'A' with char ':' as fill char, and P is period integer. For example:
//C:5, D:3, R:7
if(m_GroupSize <= 26)
{
rValue = mpt::ToUnicode(mpt::Charset::UTF8, std::string(1, static_cast<char>(pos + 'A')));
rValue += UL_(":");
} else
{
rValue = mpt::ufmt::HEX0<1>(pos % 16) + mpt::ufmt::HEX0<1>((pos / 16) % 16);
if(pos > 0xff)
{
rValue = mpt::ToUnicode(mpt::Charset::UTF8, mpt::ToLowerCaseAscii(mpt::ToCharset(mpt::Charset::UTF8, rValue)));
}
}
if(addOctave)
{
rValue += mpt::ufmt::val(middlePeriodNumber + mpt::wrapping_divide(x, m_GroupSize));
}
}
return rValue;
}
}
void CTuning::SetNoteName(const NOTEINDEXTYPE &n, const mpt::ustring &str)
{
const NOTEINDEXTYPE pos = (GetGroupSize() < 1) ? n : static_cast<NOTEINDEXTYPE>(mpt::wrapping_modulo(n, m_GroupSize));
if(!str.empty())
{
m_NoteNameMap[pos] = str;
} else
{
const auto iter = m_NoteNameMap.find(pos);
if(iter != m_NoteNameMap.end())
{
m_NoteNameMap.erase(iter);
}
}
}
// Without finetune
RATIOTYPE CTuning::GetRatio(const NOTEINDEXTYPE note) const
{
if(!IsValidNote(note))
{
return s_DefaultFallbackRatio;
}
const auto ratio = m_RatioTable[note - m_NoteMin];
if(ratio <= 1e-15f)
{
return s_DefaultFallbackRatio;
}
return ratio;
}
// With finetune
RATIOTYPE CTuning::GetRatio(const NOTEINDEXTYPE baseNote, const STEPINDEXTYPE baseFineSteps) const
{
const STEPINDEXTYPE fineStepCount = static_cast<STEPINDEXTYPE>(GetFineStepCount());
if(fineStepCount == 0 || baseFineSteps == 0)
{
return GetRatio(static_cast<NOTEINDEXTYPE>(baseNote + baseFineSteps));
}
// If baseFineSteps is more than the number of finesteps between notes, note is increased.
// So first figuring out what note and fineStep values to actually use.
// Interpreting finestep==-1 on note x so that it is the same as finestep==fineStepCount on note x-1.
// Note: If fineStepCount is n, n+1 steps are needed to get to next note.
const NOTEINDEXTYPE note = static_cast<NOTEINDEXTYPE>(baseNote + mpt::wrapping_divide(baseFineSteps, (fineStepCount + 1)));
const STEPINDEXTYPE fineStep = mpt::wrapping_modulo(baseFineSteps, (fineStepCount + 1));
if(!IsValidNote(note))
{
return s_DefaultFallbackRatio;
}
if(fineStep == 0)
{
return m_RatioTable[note - m_NoteMin];
}
RATIOTYPE fineRatio = static_cast<RATIOTYPE>(1.0);
if(GetType() == Type::GEOMETRIC && m_RatioTableFine.size() > 0)
{
fineRatio = m_RatioTableFine[fineStep - 1];
} else if(GetType() == Type::GROUPGEOMETRIC && m_RatioTableFine.size() > 0)
{
fineRatio = m_RatioTableFine[GetRefNote(note) * fineStepCount + fineStep - 1];
} else
{
// Geometric finestepping
fineRatio = std::pow(GetRatio(note + 1) / GetRatio(note), static_cast<RATIOTYPE>(fineStep) / (fineStepCount + 1));
}
return m_RatioTable[note - m_NoteMin] * fineRatio;
}
bool CTuning::SetRatio(const NOTEINDEXTYPE& s, const RATIOTYPE& r)
{
if(GetType() != Type::GROUPGEOMETRIC && GetType() != Type::GENERAL)
{
return false;
}
//Creating ratio table if doesn't exist.
if(m_RatioTable.empty())
{
m_RatioTable.assign(s_RatioTableSizeDefault, 1);
m_NoteMin = s_NoteMinDefault;
}
if(!IsValidNote(s))
{
return false;
}
m_RatioTable[s - m_NoteMin] = std::fabs(r);
if(GetType() == Type::GROUPGEOMETRIC)
{ // update other groups
for(NOTEINDEXTYPE n = m_NoteMin; n < m_NoteMin + static_cast<NOTEINDEXTYPE>(m_RatioTable.size()); ++n)
{
if(n == s)
{
// nothing
} else if(std::abs(n - s) % m_GroupSize == 0)
{
m_RatioTable[n - m_NoteMin] = std::pow(m_GroupRatio, static_cast<RATIOTYPE>(n - s) / static_cast<RATIOTYPE>(m_GroupSize)) * m_RatioTable[s - m_NoteMin];
}
}
UpdateFineStepTable();
}
return true;
}
void CTuning::SetFineStepCount(const USTEPINDEXTYPE& fs)
{
m_FineStepCount = std::clamp(mpt::saturate_cast<STEPINDEXTYPE>(fs), STEPINDEXTYPE(0), FINESTEPCOUNT_MAX);
UpdateFineStepTable();
}
void CTuning::UpdateFineStepTable()
{
if(m_FineStepCount <= 0)
{
m_RatioTableFine.clear();
return;
}
if(GetType() == Type::GEOMETRIC)
{
if(m_FineStepCount > s_RatioTableFineSizeMaxDefault)
{
m_RatioTableFine.clear();
return;
}
m_RatioTableFine.resize(m_FineStepCount);
const RATIOTYPE q = GetRatio(GetNoteRange().first + 1) / GetRatio(GetNoteRange().first);
const RATIOTYPE rFineStep = std::pow(q, static_cast<RATIOTYPE>(1)/(m_FineStepCount+1));
for(USTEPINDEXTYPE i = 1; i<=m_FineStepCount; i++)
m_RatioTableFine[i-1] = std::pow(rFineStep, static_cast<RATIOTYPE>(i));
return;
}
if(GetType() == Type::GROUPGEOMETRIC)
{
const UNOTEINDEXTYPE p = GetGroupSize();
if(p > s_RatioTableFineSizeMaxDefault / m_FineStepCount)
{
//In case fineratiotable would become too large, not using
//table for it.
m_RatioTableFine.clear();
return;
}
else
{
//Creating 'geometric' finestepping between notes.
m_RatioTableFine.resize(p * m_FineStepCount);
const NOTEINDEXTYPE startnote = GetRefNote(GetNoteRange().first);
for(UNOTEINDEXTYPE i = 0; i<p; i++)
{
const NOTEINDEXTYPE refnote = GetRefNote(startnote+i);
const RATIOTYPE rFineStep = std::pow(GetRatio(refnote+1) / GetRatio(refnote), static_cast<RATIOTYPE>(1)/(m_FineStepCount+1));
for(UNOTEINDEXTYPE j = 1; j<=m_FineStepCount; j++)
{
m_RatioTableFine[m_FineStepCount * refnote + (j-1)] = std::pow(rFineStep, static_cast<RATIOTYPE>(j));
}
}
return;
}
}
if(GetType() == Type::GENERAL)
{
//Not using table with tuning of type general.
m_RatioTableFine.clear();
return;
}
//Should not reach here.
m_RatioTableFine.clear();
m_FineStepCount = 0;
}
bool CTuning::Multiply(const RATIOTYPE r)
{
if(!IsValidRatio(r))
{
return false;
}
for(auto & ratio : m_RatioTable)
{
ratio *= r;
}
return true;
}
bool CTuning::ChangeGroupsize(const NOTEINDEXTYPE& s)
{
if(s < 1)
return false;
if(m_TuningType == Type::GROUPGEOMETRIC)
return CreateGroupGeometric(s, GetGroupRatio(), 0);
if(m_TuningType == Type::GEOMETRIC)
return CreateGeometric(s, GetGroupRatio());
return false;
}
bool CTuning::ChangeGroupRatio(const RATIOTYPE& r)
{
if(!IsValidRatio(r))
return false;
if(m_TuningType == Type::GROUPGEOMETRIC)
return CreateGroupGeometric(GetGroupSize(), r, 0);
if(m_TuningType == Type::GEOMETRIC)
return CreateGeometric(GetGroupSize(), r);
return false;
}
SerializationResult CTuning::InitDeserialize(std::istream &iStrm, mpt::Charset defaultCharset)
{
// Note: OpenMPT since at least r323 writes version number (4<<24)+4 while it
// reads version number (5<<24)+4 or earlier.
// We keep this behaviour.
if(iStrm.fail())
return SerializationResult::Failure;
srlztn::SsbRead ssb(iStrm);
ssb.BeginRead("CTB244RTI", (5 << 24) + 4); // version
int8 use_utf8 = 0;
ssb.ReadItem(use_utf8, "UTF8");
const mpt::Charset charset = use_utf8 ? mpt::Charset::UTF8 : defaultCharset;
ssb.ReadItem(m_TuningName, "0", [charset](std::istream &iStrm, mpt::ustring &ustr, const std::size_t dummy){ return ReadStr(iStrm, ustr, dummy, charset); });
uint16 dummyEditMask = 0xffff;
ssb.ReadItem(dummyEditMask, "1");
std::underlying_type<Type>::type type = 0;
ssb.ReadItem(type, "2");
m_TuningType = static_cast<Type>(type);
ssb.ReadItem(m_NoteNameMap, "3", [charset](std::istream &iStrm, std::map<NOTEINDEXTYPE, mpt::ustring> &m, const std::size_t dummy){ return ReadNoteMap(iStrm, m, dummy, charset); });
ssb.ReadItem(m_FineStepCount, "4");
// RTI entries.
ssb.ReadItem(m_RatioTable, "RTI0", ReadRatioTable);
ssb.ReadItem(m_NoteMin, "RTI1");
ssb.ReadItem(m_GroupSize, "RTI2");
ssb.ReadItem(m_GroupRatio, "RTI3");
UNOTEINDEXTYPE ratiotableSize = 0;
ssb.ReadItem(ratiotableSize, "RTI4");
m_GroupRatio = SanitizeGroupRatio(m_GroupRatio);
if(!std::isfinite(m_GroupRatio))
{
return SerializationResult::Failure;
}
for(auto ratio : m_RatioTable)
{
if(!std::isfinite(ratio))
return SerializationResult::Failure;
}
// If reader status is ok and m_NoteMin is somewhat reasonable, process data.
if(!((ssb.GetStatus() & srlztn::SNT_FAILURE) == 0 && m_NoteMin >= -300 && m_NoteMin <= 300))
{
return SerializationResult::Failure;
}
// reject unknown types
if(m_TuningType != Type::GENERAL && m_TuningType != Type::GROUPGEOMETRIC && m_TuningType != Type::GEOMETRIC)
{
return SerializationResult::Failure;
}
if(m_GroupSize < 0)
{
return SerializationResult::Failure;
}
m_FineStepCount = std::clamp(mpt::saturate_cast<STEPINDEXTYPE>(m_FineStepCount), STEPINDEXTYPE(0), FINESTEPCOUNT_MAX);
if(m_RatioTable.size() > static_cast<size_t>(NOTEINDEXTYPE_MAX))
{
return SerializationResult::Failure;
}
if((GetType() == Type::GROUPGEOMETRIC) || (GetType() == Type::GEOMETRIC))
{
if(ratiotableSize < 1 || ratiotableSize > NOTEINDEXTYPE_MAX)
{
return SerializationResult::Failure;
}
if(GetType() == Type::GEOMETRIC)
{
if(!CreateGeometric(GetGroupSize(), GetGroupRatio(), NoteRange{m_NoteMin, static_cast<NOTEINDEXTYPE>(m_NoteMin + ratiotableSize - 1)}))
{
return SerializationResult::Failure;
}
} else
{
if(!CreateGroupGeometric(m_RatioTable, GetGroupRatio(), NoteRange{m_NoteMin, static_cast<NOTEINDEXTYPE>(m_NoteMin + ratiotableSize - 1)}, m_NoteMin))
{
return SerializationResult::Failure;
}
}
} else
{
UpdateFineStepTable();
}
return SerializationResult::Success;
}
template<class T, class SIZETYPE, class Tdst>
static bool VectorFromBinaryStream(std::istream& inStrm, std::vector<Tdst>& v, const SIZETYPE maxSize = (std::numeric_limits<SIZETYPE>::max)())
{
if(!inStrm.good())
return false;
SIZETYPE size = 0;
mpt::IO::ReadIntLE<SIZETYPE>(inStrm, size);
if(size > maxSize)
return false;
v.resize(size);
for(std::size_t i = 0; i<size; i++)
{
T tmp = T();
mpt::IO::Read(inStrm, tmp);
v[i] = tmp;
}
return inStrm.good();
}
SerializationResult CTuning::InitDeserializeOLD(std::istream &inStrm, mpt::Charset defaultCharset)
{
if(!inStrm.good())
return SerializationResult::Failure;
const std::streamoff startPos = inStrm.tellg();
//First checking is there expected begin sequence.
char begin[8];
MemsetZero(begin);
inStrm.read(begin, sizeof(begin));
if(std::memcmp(begin, "CTRTI_B.", 8))
{
//Returning stream position if beginmarker was not found.
inStrm.seekg(startPos);
return SerializationResult::Failure;
}
//Version
int16 version = 0;
mpt::IO::ReadIntLE<int16>(inStrm, version);
if(version != 2 && version != 3)
return SerializationResult::Failure;
char begin2[8];
MemsetZero(begin2);
inStrm.read(begin2, sizeof(begin2));
if(std::memcmp(begin2, "CT<sfs>B", 8))
{
return SerializationResult::Failure;
}
int16 version2 = 0;
mpt::IO::ReadIntLE<int16>(inStrm, version2);
if(version2 != 3 && version2 != 4)
{
return SerializationResult::Failure;
}
//Tuning name
if(version2 <= 3)
{
std::string tmpName;
if(!mpt::IO::ReadSizedStringLE<uint32>(inStrm, tmpName, 0xffff))
{
return SerializationResult::Failure;
}
m_TuningName = mpt::ToUnicode(defaultCharset, tmpName);
} else
{
std::string tmpName;
if(!mpt::IO::ReadSizedStringLE<uint8>(inStrm, tmpName))
{
return SerializationResult::Failure;
}
m_TuningName = mpt::ToUnicode(defaultCharset, tmpName);
}
//Const mask
int16 em = 0;
mpt::IO::ReadIntLE<int16>(inStrm, em);
//Tuning type
int16 tt = 0;
mpt::IO::ReadIntLE<int16>(inStrm, tt);
m_TuningType = static_cast<Type>(tt);
//Notemap
uint16 size = 0;
if(version2 <= 3)
{
uint32 tempsize = 0;
mpt::IO::ReadIntLE<uint32>(inStrm, tempsize);
if(tempsize > 0xffff)
{
return SerializationResult::Failure;
}
size = mpt::saturate_cast<uint16>(tempsize);
} else
{
mpt::IO::ReadIntLE<uint16>(inStrm, size);
}
for(UNOTEINDEXTYPE i = 0; i<size; i++)
{
std::string str;
int16 n = 0;
mpt::IO::ReadIntLE<int16>(inStrm, n);
if(version2 <= 3)
{
if(!mpt::IO::ReadSizedStringLE<uint32>(inStrm, str, 0xffff))
{
return SerializationResult::Failure;
}
} else
{
if(!mpt::IO::ReadSizedStringLE<uint8>(inStrm, str))
{
return SerializationResult::Failure;
}
}
m_NoteNameMap[n] = mpt::ToUnicode(defaultCharset, str);
}
//End marker
char end2[8];
MemsetZero(end2);
inStrm.read(end2, sizeof(end2));
if(std::memcmp(end2, "CT<sfs>E", 8))
{
return SerializationResult::Failure;
}
// reject unknown types
if(m_TuningType != Type::GENERAL && m_TuningType != Type::GROUPGEOMETRIC && m_TuningType != Type::GEOMETRIC)
{
return SerializationResult::Failure;
}
//Ratiotable
if(version <= 2)
{
if(!VectorFromBinaryStream<IEEE754binary32LE, uint32>(inStrm, m_RatioTable, 0xffff))
{
return SerializationResult::Failure;
}
} else
{
if(!VectorFromBinaryStream<IEEE754binary32LE, uint16>(inStrm, m_RatioTable))
{
return SerializationResult::Failure;
}
}
for(auto ratio : m_RatioTable)
{
if(!std::isfinite(ratio))
return SerializationResult::Failure;
}
//Fineratios
if(version <= 2)
{
if(!VectorFromBinaryStream<IEEE754binary32LE, uint32>(inStrm, m_RatioTableFine, 0xffff))
{
return SerializationResult::Failure;
}
} else
{
if(!VectorFromBinaryStream<IEEE754binary32LE, uint16>(inStrm, m_RatioTableFine))
{
return SerializationResult::Failure;
}
}
for(auto ratio : m_RatioTableFine)
{
if(!std::isfinite(ratio))
return SerializationResult::Failure;
}
m_FineStepCount = mpt::saturate_cast<USTEPINDEXTYPE>(m_RatioTableFine.size());
// m_NoteMin
int16 notemin = 0;
mpt::IO::ReadIntLE<int16>(inStrm, notemin);
m_NoteMin = notemin;
if(m_NoteMin < -200 || m_NoteMin > 200)
{
return SerializationResult::Failure;
}
//m_GroupSize
int16 groupsize = 0;
mpt::IO::ReadIntLE<int16>(inStrm, groupsize);
m_GroupSize = groupsize;
if(m_GroupSize < 0)
{
return SerializationResult::Failure;
}
//m_GroupRatio
IEEE754binary32LE groupratio = IEEE754binary32LE(0.0f);
mpt::IO::Read(inStrm, groupratio);
m_GroupRatio = SanitizeGroupRatio(groupratio);
if(!std::isfinite(m_GroupRatio))
{
return SerializationResult::Failure;
}
char end[8];
MemsetZero(end);
inStrm.read(reinterpret_cast<char*>(&end), sizeof(end));
if(std::memcmp(end, "CTRTI_E.", 8))
{
return SerializationResult::Failure;
}
// reject corrupt tunings
if(m_RatioTable.size() > static_cast<std::size_t>(NOTEINDEXTYPE_MAX))
{
return SerializationResult::Failure;
}
if((m_GroupSize <= 0 || m_GroupRatio <= 0) && m_TuningType != Type::GENERAL)
{
return SerializationResult::Failure;
}
if(m_TuningType == Type::GROUPGEOMETRIC || m_TuningType == Type::GEOMETRIC)
{
if(m_RatioTable.size() < static_cast<std::size_t>(m_GroupSize))
{
return SerializationResult::Failure;
}
}
// convert old finestepcount
if(m_FineStepCount > 0)
{
m_FineStepCount -= 1;
}
m_FineStepCount = std::clamp(mpt::saturate_cast<STEPINDEXTYPE>(m_FineStepCount), STEPINDEXTYPE(0), FINESTEPCOUNT_MAX);
UpdateFineStepTable();
if(m_TuningType == Type::GEOMETRIC)
{
// Convert old geometric to new groupgeometric because old geometric tunings
// can have ratio(0) != 1.0, which would get lost when saving nowadays.
if(mpt::saturate_cast<NOTEINDEXTYPE>(m_RatioTable.size()) >= m_GroupSize - m_NoteMin)
{
std::vector<RATIOTYPE> ratios;
for(NOTEINDEXTYPE n = 0; n < m_GroupSize; ++n)
{
ratios.push_back(m_RatioTable[n - m_NoteMin]);
}
CreateGroupGeometric(ratios, m_GroupRatio, GetNoteRange(), 0);
}
}
return SerializationResult::Success;
}
Tuning::SerializationResult CTuning::Serialize(std::ostream& outStrm) const
{
// Note: OpenMPT since at least r323 writes version number (4<<24)+4 while it
// reads version number (5<<24)+4.
// We keep this behaviour.
srlztn::SsbWrite ssb(outStrm);
ssb.BeginWrite("CTB244RTI", (4 << 24) + 4); // version
ssb.WriteItem(int8(1), "UTF8");
if (m_TuningName.length() > 0)
ssb.WriteItem(m_TuningName, "0", WriteStr);
uint16 dummyEditMask = 0xffff;
ssb.WriteItem(dummyEditMask, "1");
ssb.WriteItem(static_cast<std::underlying_type<Type>::type>(m_TuningType), "2");
if (m_NoteNameMap.size() > 0)
ssb.WriteItem(m_NoteNameMap, "3", WriteNoteMap);
if (GetFineStepCount() > 0)
ssb.WriteItem(m_FineStepCount, "4");
const Tuning::Type tt = GetType();
if (GetGroupRatio() > 0)
ssb.WriteItem(m_GroupRatio, "RTI3");
if (tt == Type::GROUPGEOMETRIC)
ssb.WriteItem(m_RatioTable, "RTI0", RatioWriter(GetGroupSize()));
if (tt == Type::GENERAL)
ssb.WriteItem(m_RatioTable, "RTI0", RatioWriter());
if (tt == Type::GEOMETRIC)
ssb.WriteItem(m_GroupSize, "RTI2");
if(tt == Type::GEOMETRIC || tt == Type::GROUPGEOMETRIC)
{ //For Groupgeometric this data is the number of ratios in ratiotable.
UNOTEINDEXTYPE ratiotableSize = static_cast<UNOTEINDEXTYPE>(m_RatioTable.size());
ssb.WriteItem(ratiotableSize, "RTI4");
}
// m_NoteMin
ssb.WriteItem(m_NoteMin, "RTI1");
ssb.FinishWrite();
return ((ssb.GetStatus() & srlztn::SNT_FAILURE) != 0) ? Tuning::SerializationResult::Failure : Tuning::SerializationResult::Success;
}
#ifdef MODPLUG_TRACKER
bool CTuning::WriteSCL(std::ostream &f, const mpt::PathString &filename) const
{
mpt::IO::WriteTextCRLF(f, mpt::format("! %1")(mpt::ToCharset(mpt::Charset::ISO8859_1, (filename.GetFileName() + filename.GetFileExt()).ToUnicode())));
mpt::IO::WriteTextCRLF(f, "!");
std::string name = mpt::ToCharset(mpt::Charset::ISO8859_1, GetName());
for(auto & c : name) { if(static_cast<uint8>(c) < 32) c = ' '; } // remove control characters
if(name.length() >= 1 && name[0] == '!') name[0] = '?'; // do not confuse description with comment
mpt::IO::WriteTextCRLF(f, name);
if(GetType() == Type::GEOMETRIC)
{
mpt::IO::WriteTextCRLF(f, mpt::format(" %1")(m_GroupSize));
mpt::IO::WriteTextCRLF(f, "!");
for(NOTEINDEXTYPE n = 0; n < m_GroupSize; ++n)
{
double ratio = std::pow(static_cast<double>(m_GroupRatio), static_cast<double>(n + 1) / static_cast<double>(m_GroupSize));
double cents = std::log2(ratio) * 1200.0;
mpt::IO::WriteTextCRLF(f, mpt::format(" %1 ! %2")(
mpt::fmt::fix(cents),
mpt::ToCharset(mpt::Charset::ISO8859_1, GetNoteName((n + 1) % m_GroupSize, false))
));
}
} else if(GetType() == Type::GROUPGEOMETRIC)
{
mpt::IO::WriteTextCRLF(f, mpt::format(" %1")(m_GroupSize));
mpt::IO::WriteTextCRLF(f, "!");
for(NOTEINDEXTYPE n = 0; n < m_GroupSize; ++n)
{
bool last = (n == (m_GroupSize - 1));
double baseratio = static_cast<double>(GetRatio(0));
double ratio = static_cast<double>(last ? m_GroupRatio : GetRatio(n + 1)) / baseratio;
double cents = std::log2(ratio) * 1200.0;
mpt::IO::WriteTextCRLF(f, mpt::format(" %1 ! %2")(
mpt::fmt::fix(cents),
mpt::ToCharset(mpt::Charset::ISO8859_1, GetNoteName((n + 1) % m_GroupSize, false))
));
}
} else if(GetType() == Type::GENERAL)
{
mpt::IO::WriteTextCRLF(f, mpt::format(" %1")(m_RatioTable.size() + 1));
mpt::IO::WriteTextCRLF(f, "!");
double baseratio = 1.0;
for(NOTEINDEXTYPE n = 0; n < mpt::saturate_cast<NOTEINDEXTYPE>(m_RatioTable.size()); ++n)
{
baseratio = std::min(baseratio, static_cast<double>(m_RatioTable[n]));
}
for(NOTEINDEXTYPE n = 0; n < mpt::saturate_cast<NOTEINDEXTYPE>(m_RatioTable.size()); ++n)
{
double ratio = static_cast<double>(m_RatioTable[n]) / baseratio;
double cents = std::log2(ratio) * 1200.0;
mpt::IO::WriteTextCRLF(f, mpt::format(" %1 ! %2")(
mpt::fmt::fix(cents),
mpt::ToCharset(mpt::Charset::ISO8859_1, GetNoteName(n + m_NoteMin, false))
));
}
mpt::IO::WriteTextCRLF(f, mpt::format(" %1 ! %2")(
mpt::fmt::val(1),
std::string()
));
} else
{
return false;
}
return true;
}
#endif
namespace CTuningS11n
{
void RatioWriter::operator()(std::ostream& oStrm, const std::vector<float>& v)
{
const std::size_t nWriteCount = std::min(v.size(), static_cast<std::size_t>(m_nWriteCount));
mpt::IO::WriteAdaptiveInt64LE(oStrm, nWriteCount);
for(size_t i = 0; i < nWriteCount; i++)
mpt::IO::Write(oStrm, IEEE754binary32LE(v[i]));
}
void ReadNoteMap(std::istream &iStrm, std::map<NOTEINDEXTYPE, mpt::ustring> &m, const std::size_t dummy, mpt::Charset charset)
{
MPT_UNREFERENCED_PARAMETER(dummy);
uint64 val;
mpt::IO::ReadAdaptiveInt64LE(iStrm, val);
LimitMax(val, 256u); // Read 256 at max.
for(size_t i = 0; i < val; i++)
{
int16 key;
mpt::IO::ReadIntLE<int16>(iStrm, key);
std::string str;
mpt::IO::ReadSizedStringLE<uint8>(iStrm, str);
m[key] = mpt::ToUnicode(charset, str);
}
}
void ReadRatioTable(std::istream& iStrm, std::vector<RATIOTYPE>& v, const size_t)
{
uint64 val;
mpt::IO::ReadAdaptiveInt64LE(iStrm, val);
v.resize(std::min(mpt::saturate_cast<std::size_t>(val), std::size_t(256))); // Read 256 vals at max.
for(size_t i = 0; i < v.size(); i++)
{
IEEE754binary32LE tmp(0.0f);
mpt::IO::Read(iStrm, tmp);
v[i] = tmp;
}
}
void ReadStr(std::istream &iStrm, mpt::ustring &ustr, const std::size_t dummy, mpt::Charset charset)
{
MPT_UNREFERENCED_PARAMETER(dummy);
std::string str;
uint64 val;
mpt::IO::ReadAdaptiveInt64LE(iStrm, val);
size_t nSize = (val > 255) ? 255 : static_cast<size_t>(val); // Read 255 characters at max.
str.clear();
str.resize(nSize);
for(size_t i = 0; i < nSize; i++)
mpt::IO::ReadIntLE(iStrm, str[i]);
if(str.find_first_of('\0') != std::string::npos)
{ // trim \0 at the end
str.resize(str.find_first_of('\0'));
}
ustr = mpt::ToUnicode(charset, str);
}
void WriteNoteMap(std::ostream &oStrm, const std::map<NOTEINDEXTYPE, mpt::ustring> &m)
{
mpt::IO::WriteAdaptiveInt64LE(oStrm, m.size());
for(auto &mi : m)
{
mpt::IO::WriteIntLE<int16>(oStrm, mi.first);
mpt::IO::WriteSizedStringLE<uint8>(oStrm, mpt::ToCharset(mpt::Charset::UTF8, mi.second));
}
}
void WriteStr(std::ostream &oStrm, const mpt::ustring &ustr)
{
std::string str = mpt::ToCharset(mpt::Charset::UTF8, ustr);
mpt::IO::WriteAdaptiveInt64LE(oStrm, str.size());
oStrm.write(str.c_str(), str.size());
}
} // namespace CTuningS11n.
} // namespace Tuning
OPENMPT_NAMESPACE_END