cog/Frameworks/vgmstream/vgmstream/src/coding/msadpcm_decoder.c

275 lines
11 KiB
C

#include "../util.h"
#include "coding.h"
/* table values are interpreted as fixed point 8.8 signed values */
/* AdaptionTable */
static const int16_t msadpcm_steps[16] = {
230, 230, 230, 230,
307, 409, 512, 614,
768, 614, 512, 409,
307, 230, 230, 230
};
/* aCoeff table, normally included with container and (in theory) encoder may add extra coefs but first 7 are preset coefs */
static const int16_t msadpcm_coefs[7][2] = {
{ 256, 0 },
{ 512, -256 },
{ 0, 0 },
{ 192, 64 },
{ 240, 0 },
{ 460, -208 },
{ 392, -232 }
};
/* Decodes MSADPCM as explained in the spec (RIFFNEW doc + msadpcm.c).
* Though RIFFNEW writes "predictor / 256" (DIV), msadpcm.c uses "predictor >> 8" (SHR). They may seem the
* same but on negative values SHR gets different results (-128 / 256 = 0; -128 >> 8 = -1) = some output diffs.
* SHR is true in Windows msadp32.acm decoders (up to Win10), while some non-Windows implementations or
* engines (like UE4) may use DIV.
*
* On invalid coef index, msadpcm.c returns 0 decoded samples but here we clamp and keep on trucking.
* In theory blocks may be 0-padded and should use samples_per_frame from header, in practice seems to
* decode up to block length or available data. */
static int16_t msadpcm_adpcm_expand_nibble_shr(VGMSTREAMCHANNEL* stream, uint8_t byte, int shift) {
int32_t hist1, hist2, predicted;
int code = (shift) ?
get_high_nibble_signed(byte) :
get_low_nibble_signed (byte);
hist1 = stream->adpcm_history1_16;
hist2 = stream->adpcm_history2_16;
predicted = hist1 * stream->adpcm_coef[0] + hist2 * stream->adpcm_coef[1];
predicted = predicted >> 8; /* 256 = FIXED_POINT_COEF_BASE (uses SHR instead) */
predicted = predicted + (code * stream->adpcm_scale);
predicted = clamp16(predicted); /* lNewSample */
stream->adpcm_history2_16 = stream->adpcm_history1_16;
stream->adpcm_history1_16 = predicted;
stream->adpcm_scale = (msadpcm_steps[code & 0xf] * stream->adpcm_scale) >> 8; /* not diffs vs DIV here (always >=0) */
if (stream->adpcm_scale < 16) /* min delta */
stream->adpcm_scale = 16;
return predicted;
}
static int16_t msadpcm_adpcm_expand_nibble_div(VGMSTREAMCHANNEL* stream, uint8_t byte, int shift) {
int32_t hist1, hist2, predicted;
int code = (shift) ?
get_high_nibble_signed(byte) :
get_low_nibble_signed (byte);
hist1 = stream->adpcm_history1_16;
hist2 = stream->adpcm_history2_16;
predicted = hist1 * stream->adpcm_coef[0] + hist2 * stream->adpcm_coef[1];
predicted = predicted / 256; /* 256 = FIXED_POINT_COEF_BASE */
predicted = predicted + (code * stream->adpcm_scale);
predicted = clamp16(predicted); /* lNewSample */
stream->adpcm_history2_16 = stream->adpcm_history1_16;
stream->adpcm_history1_16 = predicted;
stream->adpcm_scale = (msadpcm_steps[code & 0xf] * stream->adpcm_scale) / 256; /* 256 = FIXED_POINT_ADAPTION_BASE */
if (stream->adpcm_scale < 16) /* min delta */
stream->adpcm_scale = 16;
return predicted;
}
void decode_msadpcm_stereo(VGMSTREAM* vgmstream, sample_t* outbuf, int32_t first_sample, int32_t samples_to_do) {
VGMSTREAMCHANNEL *stream1, *stream2;
uint8_t frame[MSADPCM_MAX_BLOCK_SIZE] = {0};
int i, frames_in;
size_t bytes_per_frame, samples_per_frame;
off_t frame_offset;
stream1 = &vgmstream->ch[0];
stream2 = &vgmstream->ch[1];
/* external interleave (variable size), stereo */
bytes_per_frame = vgmstream->frame_size;
samples_per_frame = (vgmstream->frame_size - 0x07*vgmstream->channels)*2 / vgmstream->channels + 2;
frames_in = first_sample / samples_per_frame;
first_sample = first_sample % samples_per_frame;
frame_offset = stream1->offset + frames_in * bytes_per_frame;
read_streamfile(frame, frame_offset, bytes_per_frame, stream1->streamfile); /* ignore EOF errors */
/* parse frame header (ADPCMBLOCKHEADER) */
if (first_sample == 0) {
stream1->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][0]; /* bPredictor[0] index > iCoef1 */
stream1->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][1]; /* bPredictor[0] index > iCoef2 */
stream2->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x01) & 0x07][0]; /* bPredictor[1] index > iCoef1 */
stream2->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x01) & 0x07][1]; /* bPredictor[1] index > iCoef2 */
stream1->adpcm_scale = get_s16le(frame+0x02); /* iDelta[0] */
stream2->adpcm_scale = get_s16le(frame+0x04); /* iDelta[0] */
stream1->adpcm_history1_16 = get_s16le(frame+0x06); /* iSamp1[0] */
stream2->adpcm_history1_16 = get_s16le(frame+0x08); /* iSamp1[0] */
stream1->adpcm_history2_16 = get_s16le(frame+0x0a); /* iSamp2[0] */
stream2->adpcm_history2_16 = get_s16le(frame+0x0c); /* iSamp2[1] */
}
/* write header samples (needed) */
if (first_sample==0) {
outbuf[0] = stream1->adpcm_history2_16;
outbuf[1] = stream2->adpcm_history2_16;
outbuf += 2;
first_sample++;
samples_to_do--;
}
if (first_sample == 1 && samples_to_do > 0) {
outbuf[0] = stream1->adpcm_history1_16;
outbuf[1] = stream2->adpcm_history1_16;
outbuf += 2;
first_sample++;
samples_to_do--;
}
/* decode nibbles */
for (i = first_sample; i < first_sample + samples_to_do; i++) {
uint8_t byte = get_u8(frame+0x07*2+(i-2));
*outbuf++ = msadpcm_adpcm_expand_nibble_shr(&vgmstream->ch[0], byte, 1); /* L */
*outbuf++ = msadpcm_adpcm_expand_nibble_shr(&vgmstream->ch[1], byte, 0); /* R */
}
}
void decode_msadpcm_mono(VGMSTREAM* vgmstream, sample_t* outbuf, int channelspacing, int32_t first_sample, int32_t samples_to_do, int channel, int config) {
VGMSTREAMCHANNEL* stream = &vgmstream->ch[channel];
uint8_t frame[MSADPCM_MAX_BLOCK_SIZE] = {0};
int i, frames_in;
size_t bytes_per_frame, samples_per_frame;
off_t frame_offset;
int is_shr = (config == 0);
/* external interleave (variable size), mono */
bytes_per_frame = vgmstream->frame_size;
samples_per_frame = (vgmstream->frame_size - 0x07)*2 + 2;
frames_in = first_sample / samples_per_frame;
first_sample = first_sample % samples_per_frame;
frame_offset = stream->offset + frames_in * bytes_per_frame;
read_streamfile(frame, frame_offset, bytes_per_frame, stream->streamfile); /* ignore EOF errors */
/* parse frame header */
if (first_sample == 0) {
stream->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][0];
stream->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][1];
stream->adpcm_scale = get_s16le(frame+0x01);
stream->adpcm_history1_16 = get_s16le(frame+0x03);
stream->adpcm_history2_16 = get_s16le(frame+0x05);
}
/* write header samples (needed) */
if (first_sample == 0) {
outbuf[0] = stream->adpcm_history2_16;
outbuf += channelspacing;
first_sample++;
samples_to_do--;
}
if (first_sample == 1 && samples_to_do > 0) {
outbuf[0] = stream->adpcm_history1_16;
outbuf += channelspacing;
first_sample++;
samples_to_do--;
}
/* decode nibbles */
for (i = first_sample; i < first_sample + samples_to_do; i++) {
uint8_t byte = get_u8(frame+0x07+(i-2)/2);
int shift = !(i & 1); /* high nibble first */
outbuf[0] = is_shr ?
msadpcm_adpcm_expand_nibble_shr(stream, byte, shift) :
msadpcm_adpcm_expand_nibble_div(stream, byte, shift);
outbuf += channelspacing;
}
}
/* Cricket Audio's MSADPCM, same thing with reversed hist and nibble order, reverse engineered from the exe.
* (their tools may convert to float/others but internally it's all PCM16). */
void decode_msadpcm_ck(VGMSTREAM* vgmstream, sample_t* outbuf, int channelspacing, int32_t first_sample, int32_t samples_to_do, int channel) {
VGMSTREAMCHANNEL* stream = &vgmstream->ch[channel];
uint8_t frame[MSADPCM_MAX_BLOCK_SIZE] = {0};
int i, frames_in;
size_t bytes_per_frame, samples_per_frame;
off_t frame_offset;
/* external interleave (variable size), mono */
bytes_per_frame = vgmstream->frame_size;
samples_per_frame = (vgmstream->frame_size - 0x07)*2 + 2;
frames_in = first_sample / samples_per_frame;
first_sample = first_sample % samples_per_frame;
frame_offset = stream->offset + frames_in * bytes_per_frame;
read_streamfile(frame, frame_offset, bytes_per_frame, stream->streamfile); /* ignore EOF errors */
/* parse frame header */
if (first_sample == 0) {
stream->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][0];
stream->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][1];
stream->adpcm_scale = get_s16le(frame+0x01);
stream->adpcm_history2_16 = get_s16le(frame+0x03); /* hist2 first, unlike normal MSADPCM */
stream->adpcm_history1_16 = get_s16le(frame+0x05);
}
/* write header samples (needed) */
if (first_sample == 0) {
outbuf[0] = stream->adpcm_history2_16;
outbuf += channelspacing;
first_sample++;
samples_to_do--;
}
if (first_sample == 1 && samples_to_do > 0) {
outbuf[0] = stream->adpcm_history1_16;
outbuf += channelspacing;
first_sample++;
samples_to_do--;
}
/* decode nibbles */
for (i = first_sample; i < first_sample + samples_to_do; i++) {
uint8_t byte = get_u8(frame+0x07+(i-2)/2);
int shift = (i & 1); /* low nibble first, unlike normal MSADPCM */
outbuf[0] = msadpcm_adpcm_expand_nibble_shr(stream, byte, shift);
outbuf += channelspacing;
}
}
long msadpcm_bytes_to_samples(long bytes, int block_size, int channels) {
if (block_size <= 0 || channels <= 0) return 0;
return (bytes / block_size) * (block_size - (7-1)*channels) * 2 / channels
+ ((bytes % block_size) ? ((bytes % block_size) - (7-1)*channels) * 2 / channels : 0);
}
/* test if MSADPCM coefs were re-defined (possible in theory but not used in practice) */
int msadpcm_check_coefs(STREAMFILE* sf, uint32_t offset) {
int i;
int count = read_u16le(offset, sf);
if (count != 7) {
vgm_logi("MSADPCM: bad count %i at %x (report)\n", count, offset);
goto fail;
}
offset += 0x02;
for (i = 0; i < 7; i++) {
int16_t coef1 = read_s16le(offset + 0x00, sf);
int16_t coef2 = read_s16le(offset + 0x02, sf);
if (coef1 != msadpcm_coefs[i][0] || coef2 != msadpcm_coefs[i][1]) {
vgm_logi("MSADPCM: bad coef %i/%i vs %i/%i (report)\n", coef1, coef2, msadpcm_coefs[i][0], msadpcm_coefs[i][1]);
goto fail;
}
offset += 0x02 + 0x02;
}
return 1;
fail:
return 0;
}