cog/Audio/Chain/HeadphoneFilter.m

296 lines
13 KiB
Objective-C

//
// HeadphoneFilter.m
// CogAudio Framework
//
// Created by Christopher Snowhill on 1/24/22.
//
#import "HeadphoneFilter.h"
#import "AudioSource.h"
#import "AudioDecoder.h"
#import <audio/audio_resampler.h>
#import <memalign.h>
@implementation HeadphoneFilter
- (id)initWithImpulseFile:(NSURL *)url forSampleRate:(double)sampleRate withInputChannels:(size_t)channels {
self = [super init];
if (self) {
id<CogSource> source = [AudioSource audioSourceForURL:url];
if (!source)
return nil;
if (![source open:url])
return nil;
id<CogDecoder> decoder = [AudioDecoder audioDecoderForSource:source];
if (decoder == nil)
return nil;
if (![decoder open:source])
{
return nil;
}
NSDictionary *properties = [decoder properties];
double sampleRateOfSource = [[properties objectForKey:@"sampleRate"] floatValue];
int sampleCount = [[properties objectForKey:@"totalFrames"] intValue];
int impulseChannels = [[properties objectForKey:@"channels"] intValue];
if ([[properties objectForKey:@"floatingPoint"] boolValue] != YES ||
[[properties objectForKey:@"bitsPerSample"] intValue] != 32 ||
!([[properties objectForKey:@"endian"] isEqualToString:@"native"] ||
[[properties objectForKey:@"endian"] isEqualToString:@"little"]) ||
impulseChannels != 14)
return nil;
float * impulseBuffer = calloc(sizeof(float), (sampleCount + 1024) * sizeof(float) * impulseChannels);
[decoder readAudio:impulseBuffer frames:sampleCount];
[decoder close];
decoder = nil;
source = nil;
if (sampleRateOfSource != sampleRate) {
double sampleRatio = sampleRate / sampleRateOfSource;
int resampledCount = (int)ceil((double)sampleCount * sampleRatio);
void *resampler_data = NULL;
const retro_resampler_t *resampler = NULL;
if (!retro_resampler_realloc(&resampler_data, &resampler, "sinc", RESAMPLER_QUALITY_NORMAL, impulseChannels, sampleRatio)) {
free(impulseBuffer);
return nil;
}
int resamplerLatencyIn = (int) resampler->latency(resampler_data);
int resamplerLatencyOut = (int)ceil(resamplerLatencyIn * sampleRatio);
float * resampledImpulse = calloc(sizeof(float), (resampledCount + resamplerLatencyOut * 2 + 128) * sizeof(float) * impulseChannels);
memmove(impulseBuffer + resamplerLatencyIn * impulseChannels, impulseBuffer, sampleCount * sizeof(float) * impulseChannels);
memset(impulseBuffer, 0, resamplerLatencyIn * sizeof(float) * impulseChannels);
memset(impulseBuffer + (resamplerLatencyIn + sampleCount) * impulseChannels, 0, resamplerLatencyIn * sizeof(float) * impulseChannels);
struct resampler_data src_data;
src_data.data_in = impulseBuffer;
src_data.input_frames = sampleCount + resamplerLatencyIn * 2;
src_data.data_out = resampledImpulse;
src_data.output_frames = 0;
src_data.ratio = sampleRatio;
resampler->process(resampler_data, &src_data);
resampler->free(resampler, resampler_data);
src_data.output_frames -= resamplerLatencyOut * 2;
memmove(resampledImpulse, resampledImpulse + resamplerLatencyOut * impulseChannels, src_data.output_frames * sizeof(float) * impulseChannels);
free(impulseBuffer);
impulseBuffer = resampledImpulse;
sampleCount = (int) src_data.output_frames;
}
channelCount = channels;
bufferSize = 512;
fftSize = sampleCount + bufferSize;
int pow = 1;
while (fftSize > 2) { pow++; fftSize /= 2; }
fftSize = 2 << pow;
float * deinterleavedImpulseBuffer = (float *) memalign_calloc(128, sizeof(float), fftSize * impulseChannels);
for (size_t i = 0; i < impulseChannels; ++i) {
for (size_t j = 0; j < sampleCount; ++j) {
deinterleavedImpulseBuffer[i * fftSize + j] = impulseBuffer[i + impulseChannels * j];
}
}
free(impulseBuffer);
paddedBufferSize = fftSize;
fftSizeOver2 = (fftSize + 1) / 2;
log2n = log2f(fftSize);
log2nhalf = log2n / 2;
fftSetup = vDSP_create_fftsetup(log2n, FFT_RADIX2);
paddedSignal = (float *) memalign_calloc(128, sizeof(float), paddedBufferSize);
signal_fft.realp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
signal_fft.imagp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
input_filtered_signal_per_channel[0].realp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
input_filtered_signal_per_channel[0].imagp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
input_filtered_signal_per_channel[1].realp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
input_filtered_signal_per_channel[1].imagp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
impulse_responses = (COMPLEX_SPLIT *) calloc(sizeof(COMPLEX_SPLIT), channels * 2);
const int speakers_to_hesuvi[8][2][8] = {
{ { 6, }, { 13, } }, // mono/center
{ { 0, 8 }, { 1, 7 } }, // left/right
{ { 0, 8, 6 }, { 1, 7, 13 } }, // left/right/center
{ { 0, 8, 4, 12 }, { 1, 7, 5, 11 } },// left/right/left back/right back
{ { 0, 8, 6, 4, 12 }, { 1, 7, 13, 5, 11 } }, // left/right/center/back left/back right
{ { 0, 8, 6, 6, 4, 12 }, { 1, 7, 13, 13, 5, 11 } }, // left/right/center/lfe(center)/back left/back right
{ { 0, 8, 6, 6, -1, 2, 10 }, { 1, 7, 13, 13, -1, 3, 9 } }, // left/right/center/lfe(center)/back center(special)/side left/side right
{ { 0, 8, 6, 6, 4, 12, 2, 10 }, { 1, 7, 13, 13, 5, 11, 3, 9 } } // left/right/center/lfe(center)/back left/back right/side left/side right
};
for (size_t i = 0; i < channels; ++i) {
impulse_responses[i * 2 + 0].realp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
impulse_responses[i * 2 + 0].imagp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
impulse_responses[i * 2 + 1].realp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
impulse_responses[i * 2 + 1].imagp = (float *) memalign_calloc(128, sizeof(float), fftSizeOver2);
int leftInChannel = speakers_to_hesuvi[channels-1][0][i];
int rightInChannel = speakers_to_hesuvi[channels-1][1][i];
if (leftInChannel == -1 || rightInChannel == -1) {
float * temp = calloc(sizeof(float), fftSize * 2);
for (size_t i = 0; i < fftSize; i++) {
temp[i] = deinterleavedImpulseBuffer[i + 2 * fftSize] + deinterleavedImpulseBuffer[i + 9 * fftSize];
temp[i + fftSize] = deinterleavedImpulseBuffer[i + 3 * fftSize] + deinterleavedImpulseBuffer[i + 10 * fftSize];
}
vDSP_ctoz((DSPComplex *)temp, 2, &impulse_responses[i * 2 + 0], 1, fftSizeOver2);
vDSP_ctoz((DSPComplex *)(temp + fftSize), 2, &impulse_responses[i * 2 + 1], 1, fftSizeOver2);
free(temp);
}
else {
vDSP_ctoz((DSPComplex *)(deinterleavedImpulseBuffer + leftInChannel * fftSize), 2, &impulse_responses[i * 2 + 0], 1, fftSizeOver2);
vDSP_ctoz((DSPComplex *)(deinterleavedImpulseBuffer + rightInChannel * fftSize), 2, &impulse_responses[i * 2 + 1], 1, fftSizeOver2);
}
vDSP_fft_zrip(fftSetup, &impulse_responses[i * 2 + 0], 1, log2n, FFT_FORWARD);
vDSP_fft_zrip(fftSetup, &impulse_responses[i * 2 + 1], 1, log2n, FFT_FORWARD);
}
memalign_free(deinterleavedImpulseBuffer);
left_result = (float *) memalign_calloc(128, sizeof(float), fftSize);
right_result = (float *) memalign_calloc(128, sizeof(float), fftSize);
prevOverlap[0] = (float *) memalign_calloc(128, sizeof(float), fftSize);
prevOverlap[1] = (float *) memalign_calloc(128, sizeof(float), fftSize);
left_mix_result = (float *) memalign_calloc(128, sizeof(float), fftSize);
right_mix_result = (float *) memalign_calloc(128, sizeof(float), fftSize);
prevOverlapLength = 0;
}
return self;
}
- (void)dealloc {
if (paddedSignal) memalign_free(paddedSignal);
if (signal_fft.realp) memalign_free(signal_fft.realp);
if (signal_fft.imagp) memalign_free(signal_fft.imagp);
if (input_filtered_signal_per_channel[0].realp) memalign_free(input_filtered_signal_per_channel[0].realp);
if (input_filtered_signal_per_channel[0].imagp) memalign_free(input_filtered_signal_per_channel[0].imagp);
if (input_filtered_signal_per_channel[1].realp) memalign_free(input_filtered_signal_per_channel[1].realp);
if (input_filtered_signal_per_channel[1].imagp) memalign_free(input_filtered_signal_per_channel[1].imagp);
if (impulse_responses) {
for (size_t i = 0; i < channelCount * 2; ++i) {
if (impulse_responses[i].realp) memalign_free(impulse_responses[i].realp);
if (impulse_responses[i].imagp) memalign_free(impulse_responses[i].imagp);
}
free(impulse_responses);
}
memalign_free(left_result);
memalign_free(right_result);
if (prevOverlap[0]) memalign_free(prevOverlap[0]);
if (prevOverlap[1]) memalign_free(prevOverlap[1]);
memalign_free(left_mix_result);
memalign_free(right_mix_result);
}
- (void)process:(const float*)inBuffer sampleCount:(size_t)count toBuffer:(float *)outBuffer {
float scale = 1.0 / (8.0 * (float)fftSize);
while (count > 0) {
size_t countToDo = (count > bufferSize) ? bufferSize : count;
vDSP_vclr(left_mix_result, 1, fftSize);
vDSP_vclr(right_mix_result, 1, fftSize);
for (size_t i = 0; i < channelCount; ++i) {
cblas_scopy((int)countToDo, inBuffer + i, (int)channelCount, paddedSignal, 1);
vDSP_vclr(paddedSignal + countToDo, 1, paddedBufferSize - countToDo);
vDSP_ctoz((DSPComplex *)paddedSignal, 2, &signal_fft, 1, fftSizeOver2);
vDSP_fft_zrip(fftSetup, &signal_fft, 1, log2n, FFT_FORWARD);
// One channel forward, then multiply and back twice
float preserveIRNyq = impulse_responses[i * 2 + 0].imagp[0];
float preserveSigNyq = signal_fft.imagp[0];
impulse_responses[i * 2 + 0].imagp[0] = 0;
signal_fft.imagp[0] = 0;
vDSP_zvmul(&signal_fft, 1, &impulse_responses[i * 2 + 0], 1, &input_filtered_signal_per_channel[0], 1, fftSizeOver2, 1);
input_filtered_signal_per_channel[0].imagp[0] = preserveIRNyq * preserveSigNyq;
impulse_responses[i * 2 + 0].imagp[0] = preserveIRNyq;
preserveIRNyq = impulse_responses[i * 2 + 1].imagp[0];
impulse_responses[i * 2 + 1].imagp[0] = 0;
vDSP_zvmul(&signal_fft, 1, &impulse_responses[i * 2 + 1], 1, &input_filtered_signal_per_channel[1], 1, fftSizeOver2, 1);
input_filtered_signal_per_channel[1].imagp[0] = preserveIRNyq * preserveSigNyq;
impulse_responses[i * 2 + 1].imagp[0] = preserveIRNyq;
vDSP_fft_zrip(fftSetup, &input_filtered_signal_per_channel[0], 1, log2n, FFT_INVERSE);
vDSP_fft_zrip(fftSetup, &input_filtered_signal_per_channel[1], 1, log2n, FFT_INVERSE);
vDSP_ztoc(&input_filtered_signal_per_channel[0], 1, (DSPComplex *)left_result, 2, fftSizeOver2);
vDSP_ztoc(&input_filtered_signal_per_channel[1], 1, (DSPComplex *)right_result, 2, fftSizeOver2);
vDSP_vadd(left_mix_result, 1, left_result, 1, left_mix_result, 1, fftSize);
vDSP_vadd(right_mix_result, 1, right_result, 1, right_mix_result, 1, fftSize);
}
// Integrate previous overlap
if (prevOverlapLength) {
vDSP_vadd(prevOverlap[0], 1, left_mix_result, 1, left_mix_result, 1, prevOverlapLength);
vDSP_vadd(prevOverlap[1], 1, right_mix_result, 1, right_mix_result, 1, prevOverlapLength);
}
prevOverlapLength = (int)(fftSize - countToDo);
cblas_scopy(prevOverlapLength, left_mix_result + countToDo, 1, prevOverlap[0], 1);
cblas_scopy(prevOverlapLength, right_mix_result + countToDo, 1, prevOverlap[1], 1);
vDSP_vsmul(left_mix_result, 1, &scale, left_mix_result, 1, countToDo);
vDSP_vsmul(right_mix_result, 1, &scale, right_mix_result, 1, countToDo);
cblas_scopy((int)countToDo, left_mix_result, 1, outBuffer + 0, 2);
cblas_scopy((int)countToDo, right_mix_result, 1, outBuffer + 1, 2);
inBuffer += countToDo * channelCount;
outBuffer += countToDo * 2;
count -= countToDo;
}
}
@end