cog/Frameworks/GME/gme/k054539.c

789 lines
20 KiB
C

/*********************************************************
Konami 054539 PCM Sound Chip
A lot of information comes from Amuse.
Big thanks to them.
CHANNEL_DEBUG enables the following keys:
PAD. : toggle debug mode
PAD0 : toggle chip (0 / 1)
PAD4,6 : select channel (0 - 7)
PAD8,2 : adjust gain (00=0.0 10=1.0, 20=2.0, etc.)
PAD5 : reset gain factor to 1.0
*********************************************************/
//#include "emu.h"
#include <stdlib.h>
#include <memory.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include "mamedef.h"
#ifdef _DEBUG
#include <stdio.h>
#endif
#include "k054539.h"
#undef NULL
#define NULL ((void *)0)
#define CHANNEL_DEBUG 0
#define VERBOSE 0
#define LOG(x) do { if (VERBOSE) logerror x; } while (0)
/* Registers:
00..ff: 20 bytes/channel, 8 channels
00..02: pitch (lsb, mid, msb)
03: volume (0=max, 0x40=-36dB)
04: reverb volume (idem)
05: pan (1-f right, 10 middle, 11-1f left)
06..07: reverb delay (0=max, current computation non-trusted)
08..0a: loop (lsb, mid, msb)
0c..0e: start (lsb, mid, msb) (and current position ?)
100.1ff: effects?
13f: pan of the analog input (1-1f)
200..20f: 2 bytes/channel, 8 channels
00: type (b2-3), reverse (b5)
01: loop (b0)
214: keyon (b0-7 = channel 0-7)
215: keyoff ""
22c: channel active? ""
22d: data read/write port
22e: rom/ram select (00..7f == rom banks, 80 = ram)
22f: enable pcm (b0), disable register ram updating (b7)
The chip has a 0x4000 bytes reverb buffer (the ram from 0x22e).
The reverb delay is actually an offset in this buffer. This driver
uses some tricks (doubling the buffer size so that the longest
reverbs don't fold over the sound to output, and adding a space at
the end to fold back overflows in) to be able to do frame-based
rendering instead of sample-based.
*/
typedef struct _k054539_channel k054539_channel;
struct _k054539_channel {
UINT32 pos;
UINT32 pfrac;
INT32 val;
INT32 pval;
};
typedef struct _k054539_state k054539_state;
struct _k054539_state {
//const k054539_interface *intf;
//device_t *device;
double voltab[256];
double pantab[0xf];
double k054539_gain[8];
UINT8 k054539_posreg_latch[8][3];
int k054539_flags;
unsigned char regs[0x230];
unsigned char *ram;
int reverb_pos;
INT32 cur_ptr;
int cur_limit;
unsigned char *cur_zone;
unsigned char *rom;
UINT32 rom_size;
UINT32 rom_mask;
//sound_stream * stream;
k054539_channel channels[8];
UINT8 Muted[8];
int clock;
};
/*INLINE k054539_state *get_safe_token(device_t *device)
{
assert(device != NULL);
assert(device->type() == K054539);
return (k054539_state *)downcast<legacy_device_base *>(device)->token();
}*/
//*
//void k054539_init_flags(device_t *device, int flags)
void k054539_init_flags(void *chip, int flags)
{
//k054539_state *info = get_safe_token(device);
k054539_state *info = (k054539_state *) chip;
info->k054539_flags = flags;
}
//void k054539_set_gain(device_t *device, int channel, double gain)
void k054539_set_gain(void *chip, int channel, double gain)
{
//k054539_state *info = get_safe_token(device);
k054539_state *info = (k054539_state *) chip;
if (gain >= 0) info->k054539_gain[channel] = gain;
}
//*
static int k054539_regupdate(k054539_state *info)
{
return !(info->regs[0x22f] & 0x80);
}
static void k054539_keyon(k054539_state *info, int channel)
{
if(k054539_regupdate(info))
info->regs[0x22c] |= 1 << channel;
}
static void k054539_keyoff(k054539_state *info, int channel)
{
if(k054539_regupdate(info))
info->regs[0x22c] &= ~(1 << channel);
}
//static STREAM_UPDATE( k054539_update )
void k054539_update(void *chip, stream_sample_t **outputs, int samples)
{
//k054539_state *info = (k054539_state *)param;
k054539_state *info = (k054539_state *) chip;
#define VOL_CAP 1.80
static const INT16 dpcm[16] = {
0<<8, 1<<8, 4<<8, 9<<8, 16<<8, 25<<8, 36<<8, 49<<8,
-64<<8, -49<<8, -36<<8, -25<<8, -16<<8, -9<<8, -4<<8, -1<<8
};
int ch, reverb_pos;
short *rbase;
unsigned char *rom;
UINT32 rom_mask;
unsigned char *base1, *base2;
k054539_channel *chan;
stream_sample_t *bufl, *bufr;
UINT32 cur_pos, cur_pfrac;
int cur_val, cur_pval;
int delta, rdelta, fdelta, pdelta;
int vol, bval, pan, i;
double gain, lvol, rvol, rbvol;
reverb_pos = info->reverb_pos;
rbase = (short *)(info->ram);
memset(outputs[0], 0, samples*sizeof(*outputs[0]));
memset(outputs[1], 0, samples*sizeof(*outputs[1]));
rom = info->rom;
rom_mask = info->rom_mask;
if(!(info->regs[0x22f] & 1)) return;
info->reverb_pos = (reverb_pos + samples) & 0x3fff;
for(ch=0; ch<8; ch++)
if ((info->regs[0x22c] & (1<<ch)) && ! info->Muted[ch])
{
base1 = info->regs + 0x20*ch;
base2 = info->regs + 0x200 + 0x2*ch;
chan = info->channels + ch;
//*
delta = base1[0x00] | (base1[0x01] << 8) | (base1[0x02] << 16);
vol = base1[0x03];
bval = vol + base1[0x04];
if (bval > 255) bval = 255;
pan = base1[0x05];
// DJ Main: 81-87 right, 88 middle, 89-8f left
if (pan >= 0x81 && pan <= 0x8f)
pan -= 0x81;
else
if (pan >= 0x11 && pan <= 0x1f) pan -= 0x11; else pan = 0x18 - 0x11;
gain = info->k054539_gain[ch];
lvol = info->voltab[vol] * info->pantab[pan] * gain;
if (lvol > VOL_CAP) lvol = VOL_CAP;
rvol = info->voltab[vol] * info->pantab[0xe - pan] * gain;
if (rvol > VOL_CAP) rvol = VOL_CAP;
rbvol= info->voltab[bval] * gain / 2;
if (rbvol > VOL_CAP) rbvol = VOL_CAP;
/*
INT x FLOAT could be interpreted as INT x (int)FLOAT instead of (float)INT x FLOAT on some compilers
causing precision loss. (rdelta - 0x2000) wraps around on zero reverb and the scale factor should
actually be 1/freq_ratio because the target is an offset to the reverb buffer not sample source.
*/
rdelta = (base1[6] | (base1[7] << 8)) >> 3;
// rdelta = (reverb_pos + (int)((rdelta - 0x2000) * info->freq_ratio)) & 0x3fff;
rdelta = (int)(rdelta + reverb_pos) & 0x3fff;
cur_pos = (base1[0x0c] | (base1[0x0d] << 8) | (base1[0x0e] << 16)) & rom_mask;
bufl = outputs[0];
bufr = outputs[1];
//*
if(base2[0] & 0x20) {
delta = -delta;
fdelta = +0x10000;
pdelta = -1;
} else {
fdelta = -0x10000;
pdelta = +1;
}
if(cur_pos != chan->pos) {
chan->pos = cur_pos;
cur_pfrac = 0;
cur_val = 0;
cur_pval = 0;
} else {
cur_pfrac = chan->pfrac;
cur_val = chan->val;
cur_pval = chan->pval;
}
#define UPDATE_CHANNELS \
do { \
*bufl++ += (INT16)(cur_val*lvol); \
*bufr++ += (INT16)(cur_val*rvol); \
rbase[rdelta++] += (INT16)(cur_val*rbvol); \
rdelta &= 0x3fff; \
} while(0)
switch(base2[0] & 0xc) {
case 0x0: { // 8bit pcm
for(i=0; i<samples; i++) {
cur_pfrac += delta;
while(cur_pfrac & ~0xffff) {
cur_pfrac += fdelta;
cur_pos += pdelta;
cur_pval = cur_val;
cur_val = (INT16)(rom[cur_pos] << 8);
if(cur_val == (INT16)0x8000) {
if(base2[1] & 1) {
cur_pos = (base1[0x08] | (base1[0x09] << 8) | (base1[0x0a] << 16)) & rom_mask;
cur_val = (INT16)(rom[cur_pos] << 8);
if(cur_val != (INT16)0x8000)
continue;
}
k054539_keyoff(info, ch);
goto end_channel_0;
}
}
UPDATE_CHANNELS;
}
end_channel_0:
break;
}
case 0x4: { // 16bit pcm lsb first
pdelta <<= 1;
for(i=0; i<samples; i++) {
cur_pfrac += delta;
while(cur_pfrac & ~0xffff) {
cur_pfrac += fdelta;
cur_pos += pdelta;
cur_pval = cur_val;
cur_val = (INT16)(rom[cur_pos] | rom[cur_pos+1]<<8);
if(cur_val == (INT16)0x8000) {
if(base2[1] & 1) {
cur_pos = (base1[0x08] | (base1[0x09] << 8) | (base1[0x0a] << 16)) & rom_mask;
cur_val = (INT16)(rom[cur_pos] | rom[cur_pos+1]<<8);
if(cur_val != (INT16)0x8000)
continue;
}
k054539_keyoff(info, ch);
goto end_channel_4;
}
}
UPDATE_CHANNELS;
}
end_channel_4:
break;
}
case 0x8: { // 4bit dpcm
cur_pos <<= 1;
cur_pfrac <<= 1;
if(cur_pfrac & 0x10000) {
cur_pfrac &= 0xffff;
cur_pos |= 1;
}
for(i=0; i<samples; i++) {
cur_pfrac += delta;
while(cur_pfrac & ~0xffff) {
cur_pfrac += fdelta;
cur_pos += pdelta;
cur_pval = cur_val;
cur_val = rom[cur_pos>>1];
if(cur_val == 0x88) {
if(base2[1] & 1) {
cur_pos = ((base1[0x08] | (base1[0x09] << 8) | (base1[0x0a] << 16)) & rom_mask) << 1;
cur_val = rom[cur_pos>>1];
if(cur_val != 0x88)
goto next_iter;
}
k054539_keyoff(info, ch);
goto end_channel_8;
}
next_iter:
if(cur_pos & 1)
cur_val >>= 4;
else
cur_val &= 15;
cur_val = cur_pval + dpcm[cur_val];
if(cur_val < -32768)
cur_val = -32768;
else if(cur_val > 32767)
cur_val = 32767;
}
UPDATE_CHANNELS;
}
end_channel_8:
cur_pfrac >>= 1;
if(cur_pos & 1)
cur_pfrac |= 0x8000;
cur_pos >>= 1;
break;
}
default:
/*LOG(("Unknown sample type %x for channel %d\n", base2[0] & 0xc, ch));*/
break;
}
chan->pos = cur_pos;
chan->pfrac = cur_pfrac;
chan->pval = cur_pval;
chan->val = cur_val;
if(k054539_regupdate(info)) {
base1[0x0c] = cur_pos & 0xff;
base1[0x0d] = cur_pos>> 8 & 0xff;
base1[0x0e] = cur_pos>>16 & 0xff;
}
}
//* drivers should be given the option to disable reverb when things go terribly wrong
if(!(info->k054539_flags & K054539_DISABLE_REVERB))
{
for(i=0; i<samples; i++) {
short val = rbase[(i+reverb_pos) & 0x3fff];
outputs[0][i] += val;
outputs[1][i] += val;
}
}
if(reverb_pos + samples > 0x4000) {
i = 0x4000 - reverb_pos;
memset(rbase + reverb_pos, 0, i*2);
memset(rbase, 0, (samples-i)*2);
} else
memset(rbase + reverb_pos, 0, samples*2);
#if CHANNEL_DEBUG
{
static const char gc_msg[32] = "chip : ";
static int gc_active=0, gc_chip=0, gc_pos[2]={0,0};
double *gc_fptr;
char *gc_cptr;
double gc_f0;
int gc_i, gc_j, gc_k, gc_l;
if (device->machine().input().code_pressed_once(KEYCODE_DEL_PAD))
{
gc_active ^= 1;
if (!gc_active) popmessage(NULL);
}
if (gc_active)
{
if (device->machine().input().code_pressed_once(KEYCODE_0_PAD)) gc_chip ^= 1;
gc_i = gc_pos[gc_chip];
gc_j = 0;
if (device->machine().input().code_pressed_once(KEYCODE_4_PAD)) { gc_i--; gc_j = 1; }
if (device->machine().input().code_pressed_once(KEYCODE_6_PAD)) { gc_i++; gc_j = 1; }
if (gc_j) { gc_i &= 7; gc_pos[gc_chip] = gc_i; }
if (device->machine().input().code_pressed_once(KEYCODE_5_PAD))
info->k054539_gain[gc_i] = 1.0;
else
{
gc_fptr = &info->k054539_gain[gc_i];
gc_f0 = *gc_fptr;
gc_j = 0;
if (device->machine().input().code_pressed_once(KEYCODE_2_PAD)) { gc_f0 -= 0.1; gc_j = 1; }
if (device->machine().input().code_pressed_once(KEYCODE_8_PAD)) { gc_f0 += 0.1; gc_j = 1; }
if (gc_j) { if (gc_f0 < 0) gc_f0 = 0; *gc_fptr = gc_f0; }
}
gc_fptr = &info->k054539_gain[0] + 8;
gc_cptr = gc_msg + 7;
for (gc_j=-8; gc_j; gc_j++)
{
gc_k = (int)(gc_fptr[gc_j] * 10);
gc_l = gc_k / 10;
gc_k = gc_k % 10;
gc_cptr[0] = gc_l + '0';
gc_cptr[1] = gc_k + '0';
gc_cptr += 3;
}
gc_i = (gc_i + gc_i*2 + 6);
gc_msg[4] = gc_chip + '0';
gc_msg[gc_i ] = '[';
gc_msg[gc_i+3] = ']';
popmessage("%s", gc_msg);
gc_msg[gc_i+3] = gc_msg[gc_i] = ' ';
}
}
#endif
}
/*static TIMER_CALLBACK( k054539_irq )
{
k054539_state *info = (k054539_state *)ptr;
if(info->regs[0x22f] & 0x20)
info->intf->irq(info->device);
}*/
//static void k054539_init_chip(device_t *device, k054539_state *info)
static int k054539_init_chip(k054539_state *info, int clock)
{
//int i;
info->clock = clock;
// most of these are done in device_reset
// memset(info->regs, 0, sizeof(info->regs));
// memset(info->k054539_posreg_latch, 0, sizeof(info->k054539_posreg_latch)); //*
info->k054539_flags |= K054539_UPDATE_AT_KEYON; //* make it default until proven otherwise
// Real size of 0x4000, the addon is to simplify the reverb buffer computations
//info->ram = auto_alloc_array(device->machine(), unsigned char, 0x4000*2+device->clock()/50*2);
info->ram = (unsigned char*)malloc(0x4000 * 2 + info->clock / 50 * 2);
// info->reverb_pos = 0;
// info->cur_ptr = 0;
//memset(info->ram, 0, 0x4000*2+device->clock()/50*2);
// memset(info->ram, 0, 0x4000 * 2 + info->clock / 50 * 2);
/*const memory_region *region = (info->intf->rgnoverride != NULL) ? device->machine().region(info->intf->rgnoverride) : device->region();
info->rom = *region;
info->rom_size = region->bytes();
info->rom_mask = 0xffffffffU;
for(i=0; i<32; i++)
if((1U<<i) >= info->rom_size) {
info->rom_mask = (1U<<i) - 1;
break;
}*/
info->rom = NULL;
info->rom_size = 0;
info->rom_mask = 0x00;
//if(info->intf->irq)
// One or more of the registers must be the timer period
// And anyway, this particular frequency is probably wrong
// 480 hz is TRUSTED by gokuparo disco stage - the looping sample doesn't line up otherwise
// device->machine().scheduler().timer_pulse(attotime::from_hz(480), FUNC(k054539_irq), 0, info);
//info->stream = device->machine().sound().stream_alloc(*device, 0, 2, device->clock(), info, k054539_update);
//device->save_item(NAME(info->regs));
//device->save_pointer(NAME(info->ram), 0x4000);
//device->save_item(NAME(info->cur_ptr));
return info->clock;
}
//WRITE8_DEVICE_HANDLER( k054539_w )
void k054539_w(void *chip, offs_t offset, UINT8 data)
{
//k054539_state *info = get_safe_token(device);
k054539_state *info = (k054539_state *) chip;
#if 0
int voice, reg;
/* The K054539 has behavior like many other wavetable chips including
the Ensoniq 550x and Gravis GF-1: if a voice is active, writing
to it's current position is silently ignored.
Dadandaan depends on this or the vocals go wrong.
*/
if (offset < 8*0x20)
{
voice = offset / 0x20;
reg = offset & ~0x20;
if(info->regs[0x22c] & (1<<voice))
{
if (reg >= 0xc && reg <= 0xe)
{
return;
}
}
}
#endif
int latch, offs, ch, pan;
UINT8 *regbase, *regptr, *posptr;
regbase = info->regs;
latch = (info->k054539_flags & K054539_UPDATE_AT_KEYON) && (regbase[0x22f] & 1);
if (latch && offset < 0x100)
{
offs = (offset & 0x1f) - 0xc;
ch = offset >> 5;
if (offs >= 0 && offs <= 2)
{
// latch writes to the position index registers
info->k054539_posreg_latch[ch][offs] = data;
return;
}
}
else switch(offset)
{
case 0x13f:
pan = data >= 0x11 && data <= 0x1f ? data - 0x11 : 0x18 - 0x11;
//if(info->intf->apan)
// info->intf->apan(info->device, info->pantab[pan], info->pantab[0xe - pan]);
break;
case 0x214:
if (latch)
{
for(ch=0; ch<8; ch++)
{
if(data & (1<<ch))
{
posptr = &info->k054539_posreg_latch[ch][0];
regptr = regbase + (ch<<5) + 0xc;
// update the chip at key-on
regptr[0] = posptr[0];
regptr[1] = posptr[1];
regptr[2] = posptr[2];
k054539_keyon(info, ch);
}
}
}
else
{
for(ch=0; ch<8; ch++)
if(data & (1<<ch))
k054539_keyon(info, ch);
}
break;
case 0x215:
for(ch=0; ch<8; ch++)
if(data & (1<<ch))
k054539_keyoff(info, ch);
break;
case 0x22d:
if(regbase[0x22e] == 0x80)
info->cur_zone[info->cur_ptr] = data;
info->cur_ptr++;
if(info->cur_ptr == info->cur_limit)
info->cur_ptr = 0;
break;
case 0x22e:
info->cur_zone =
data == 0x80 ? info->ram :
info->rom + 0x20000*data;
info->cur_limit = data == 0x80 ? 0x4000 : 0x20000;
info->cur_ptr = 0;
break;
default:
#if 0
if(regbase[offset] != data) {
if((offset & 0xff00) == 0) {
chanoff = offset & 0x1f;
if(chanoff < 4 || chanoff == 5 ||
(chanoff >=8 && chanoff <= 0xa) ||
(chanoff >= 0xc && chanoff <= 0xe))
break;
}
if(1 || ((offset >= 0x200) && (offset <= 0x210)))
break;
logerror("K054539 %03x = %02x\n", offset, data);
}
#endif
break;
}
regbase[offset] = data;
}
static void reset_zones(k054539_state *info)
{
int data = info->regs[0x22e];
info->cur_zone =
data == 0x80 ? info->ram :
info->rom + 0x20000*data;
info->cur_limit = data == 0x80 ? 0x4000 : 0x20000;
}
//READ8_DEVICE_HANDLER( k054539_r )
UINT8 k054539_r(void *chip, offs_t offset)
{
//k054539_state *info = get_safe_token(device);
k054539_state *info = (k054539_state *) chip;
switch(offset) {
case 0x22d:
if(info->regs[0x22f] & 0x10) {
UINT8 res = info->cur_zone[info->cur_ptr];
info->cur_ptr++;
if(info->cur_ptr == info->cur_limit)
info->cur_ptr = 0;
return res;
} else
return 0;
case 0x22c:
break;
default:
/*LOG(("K054539 read %03x\n", offset));*/
break;
}
return info->regs[offset];
}
//static DEVICE_START( k054539 )
void * device_start_k054539(int clock)
{
//static const k054539_interface defintrf = { 0 };
int i;
//k054539_state *info = get_safe_token(device);
k054539_state *info;
info = (k054539_state *) calloc(1, sizeof(k054539_state));
//info->device = device;
for (i = 0; i < 8; i++)
info->k054539_gain[i] = 1.0;
info->k054539_flags = K054539_RESET_FLAGS;
//info->intf = (device->static_config() != NULL) ? (const k054539_interface *)device->static_config() : &defintrf;
/*
I've tried various equations on volume control but none worked consistently.
The upper four channels in most MW/GX games simply need a significant boost
to sound right. For example, the bass and smash sound volumes in Violent Storm
have roughly the same values and the voices in Tokimeki Puzzledama are given
values smaller than those of the hihats. Needless to say the two K054539 chips
in Mystic Warriors are completely out of balance. Rather than forcing a
"one size fits all" function to the voltab the current invert exponential
appraoch seems most appropriate.
*/
// Factor the 1/4 for the number of channels in the volume (1/8 is too harsh, 1/2 gives clipping)
// vol=0 -> no attenuation, vol=0x40 -> -36dB
for(i=0; i<256; i++)
info->voltab[i] = pow(10.0, (-36.0 * (double)i / (double)0x40) / 20.0) / 4.0;
// Pan table for the left channel
// Right channel is identical with inverted index
// Formula is such that pan[i]**2+pan[0xe-i]**2 = 1 (constant output power)
// and pan[0xe] = 1 (full panning)
for(i=0; i<0xf; i++)
info->pantab[i] = sqrt((double)i) / sqrt((double)0xe);
//k054539_init_chip(device, info);
//device->machine().save().register_postload(save_prepost_delegate(FUNC(reset_zones), info));
for (i = 0; i < 8; i ++)
info->Muted[i] = 0x00;
k054539_init_chip(info, clock);
return info;
}
void device_stop_k054539(void *chip)
{
k054539_state *info = (k054539_state *) chip;
free(info->rom); info->rom = NULL;
free(info->ram);
free(info);
}
void device_reset_k054539(void *chip)
{
k054539_state *info = (k054539_state *) chip;
memset(info->regs, 0, sizeof(info->regs));
memset(info->k054539_posreg_latch, 0, sizeof(info->k054539_posreg_latch));
//info->k054539_flags |= K054539_UPDATE_AT_KEYON;
info->reverb_pos = 0;
info->cur_ptr = 0;
memset(info->ram, 0, 0x4000 * 2 + info->clock / 50 * 2);
}
void k054539_write_rom(void *chip, offs_t ROMSize, offs_t DataStart, offs_t DataLength,
const UINT8* ROMData)
{
k054539_state *info = (k054539_state *) chip;
if (info->rom_size != ROMSize)
{
UINT8 i;
info->rom = (UINT8*)realloc(info->rom, ROMSize);
info->rom_size = ROMSize;
memset(info->rom, 0xFF, ROMSize);
info->rom_mask = 0xFFFFFFFF;
for (i = 0; i < 32; i ++)
{
if ((1U << i) >= info->rom_size)
{
info->rom_mask = (1 << i) - 1;
break;
}
}
}
if (DataStart > ROMSize)
return;
if (DataStart + DataLength > ROMSize)
DataLength = ROMSize - DataStart;
memcpy(info->rom + DataStart, ROMData, DataLength);
}
void k054539_set_mute_mask(void *chip, UINT32 MuteMask)
{
k054539_state *info = (k054539_state *) chip;
UINT8 CurChn;
for (CurChn = 0; CurChn < 8; CurChn ++)
info->Muted[CurChn] = (MuteMask >> CurChn) & 0x01;
return;
}