cog/Libraries/WavPack/Files/pack.c

1414 lines
44 KiB
C

////////////////////////////////////////////////////////////////////////////
// **** WAVPACK **** //
// Hybrid Lossless Wavefile Compressor //
// Copyright (c) 1998 - 2005 Conifer Software. //
// All Rights Reserved. //
// Distributed under the BSD Software License (see license.txt) //
////////////////////////////////////////////////////////////////////////////
// pack.c
// This module actually handles the compression of the audio data, except for
// the entropy coding which is handled by the words? modules. For efficiency,
// the conversion is isolated to tight loops that handle an entire buffer.
#include "wavpack.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// This flag provides faster encoding speed at the expense of more code. The
// improvement applies to 16-bit stereo lossless only.
#define FAST_ENCODE
#ifdef DEBUG_ALLOC
#define malloc malloc_db
#define realloc realloc_db
#define free free_db
void *malloc_db (uint32_t size);
void *realloc_db (void *ptr, uint32_t size);
void free_db (void *ptr);
int32_t dump_alloc (void);
#endif
//////////////////////////////// local tables ///////////////////////////////
// These two tables specify the characteristics of the decorrelation filters.
// Each term represents one layer of the sequential filter, where positive
// values indicate the relative sample involved from the same channel (1=prev),
// 17 & 18 are special functions using the previous 2 samples, and negative
// values indicate cross channel decorrelation (in stereo only).
const char default_terms [] = { 18,18,2,3,-2,0 };
const char high_terms [] = { 18,18,2,3,-2,18,2,4,7,5,3,6,8,-1,18,2,0 };
const char fast_terms [] = { 17,17,0 };
///////////////////////////// executable code ////////////////////////////////
// This function initializes everything required to pack WavPack bitstreams
// and must be called BEFORE any other function in this module.
void pack_init (WavpackContext *wpc)
{
WavpackStream *wps = wpc->streams [wpc->current_stream];
uint32_t flags = wps->wphdr.flags;
struct decorr_pass *dpp;
const char *term_string;
int ti;
wps->sample_index = 0;
wps->delta_decay = 2.0;
CLEAR (wps->decorr_passes);
CLEAR (wps->dc);
if (wpc->config.flags & CONFIG_AUTO_SHAPING)
wps->dc.shaping_acc [0] = wps->dc.shaping_acc [1] =
(wpc->config.sample_rate < 64000 || (wps->wphdr.flags & CROSS_DECORR)) ? -512L << 16 : 1024L << 16;
else {
int32_t weight = (int32_t) floor (wpc->config.shaping_weight * 1024.0 + 0.5);
if (weight <= -1000)
weight = -1000;
wps->dc.shaping_acc [0] = wps->dc.shaping_acc [1] = weight << 16;
}
if (wpc->config.flags & CONFIG_HIGH_FLAG)
term_string = high_terms;
else if (wpc->config.flags & CONFIG_FAST_FLAG)
term_string = fast_terms;
else
term_string = default_terms;
for (dpp = wps->decorr_passes, ti = 0; ti < strlen (term_string); ti++)
if (term_string [ti] >= 0 || (flags & CROSS_DECORR)) {
dpp->term = term_string [ti];
dpp++->delta = 2;
}
else if (!(flags & MONO_FLAG)) {
dpp->term = -3;
dpp++->delta = 2;
}
wps->num_terms = dpp - wps->decorr_passes;
init_words (wps);
}
// Allocate room for and copy the decorrelation terms from the decorr_passes
// array into the specified metadata structure. Both the actual term id and
// the delta are packed into single characters.
void write_decorr_terms (WavpackStream *wps, WavpackMetadata *wpmd)
{
int tcount = wps->num_terms;
struct decorr_pass *dpp;
char *byteptr;
byteptr = wpmd->data = malloc (tcount + 1);
wpmd->id = ID_DECORR_TERMS;
for (dpp = wps->decorr_passes; tcount--; ++dpp)
*byteptr++ = ((dpp->term + 5) & 0x1f) | ((dpp->delta << 5) & 0xe0);
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Allocate room for and copy the decorrelation term weights from the
// decorr_passes array into the specified metadata structure. The weights
// range +/-1024, but are rounded and truncated to fit in signed chars for
// metadata storage. Weights are separate for the two channels
void write_decorr_weights (WavpackStream *wps, WavpackMetadata *wpmd)
{
int tcount = wps->num_terms;
struct decorr_pass *dpp;
char *byteptr;
byteptr = wpmd->data = malloc ((tcount * 2) + 1);
wpmd->id = ID_DECORR_WEIGHTS;
for (dpp = wps->decorr_passes; tcount--; ++dpp) {
dpp->weight_A = restore_weight (*byteptr++ = store_weight (dpp->weight_A));
if (!(wps->wphdr.flags & MONO_FLAG))
dpp->weight_B = restore_weight (*byteptr++ = store_weight (dpp->weight_B));
}
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Allocate room for and copy the decorrelation samples from the decorr_passes
// array into the specified metadata structure. The samples are signed 32-bit
// values, but are converted to signed log2 values for storage in metadata.
// Values are stored for both channels and are specified from the first term
// with unspecified samples set to zero. The number of samples stored varies
// with the actual term value, so those must obviously be specified before
// these in the metadata list. Any number of terms can have their samples
// specified from no terms to all the terms, however I have found that
// sending more than the first term's samples is a waste. The "wcount"
// variable can be set to the number of terms to have their samples stored.
void write_decorr_samples (WavpackStream *wps, WavpackMetadata *wpmd)
{
int tcount = wps->num_terms, wcount = 1, temp;
struct decorr_pass *dpp;
uchar *byteptr;
byteptr = wpmd->data = malloc (256);
wpmd->id = ID_DECORR_SAMPLES;
for (dpp = wps->decorr_passes; tcount--; ++dpp)
if (wcount) {
if (dpp->term > MAX_TERM) {
dpp->samples_A [0] = exp2s (temp = log2s (dpp->samples_A [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
dpp->samples_A [1] = exp2s (temp = log2s (dpp->samples_A [1]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
if (!(wps->wphdr.flags & MONO_FLAG)) {
dpp->samples_B [0] = exp2s (temp = log2s (dpp->samples_B [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
dpp->samples_B [1] = exp2s (temp = log2s (dpp->samples_B [1]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
}
else if (dpp->term < 0) {
dpp->samples_A [0] = exp2s (temp = log2s (dpp->samples_A [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
dpp->samples_B [0] = exp2s (temp = log2s (dpp->samples_B [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
else {
int m = 0, cnt = dpp->term;
while (cnt--) {
dpp->samples_A [m] = exp2s (temp = log2s (dpp->samples_A [m]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
if (!(wps->wphdr.flags & MONO_FLAG)) {
dpp->samples_B [m] = exp2s (temp = log2s (dpp->samples_B [m]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
m++;
}
}
wcount--;
}
else {
CLEAR (dpp->samples_A);
CLEAR (dpp->samples_B);
}
wpmd->byte_length = byteptr - (uchar *) wpmd->data;
}
// Allocate room for and copy the noise shaping info into the specified
// metadata structure. These would normally be written to the
// "correction" file and are used for lossless reconstruction of
// hybrid data. The "delta" parameter is not yet used in encoding as it
// will be part of the "quality" mode.
void write_shaping_info (WavpackStream *wps, WavpackMetadata *wpmd)
{
char *byteptr;
int temp;
#if 0
if (wps->wphdr.block_samples) {
wps->dc.shaping_delta [0] = (-wps->dc.shaping_acc [0] - wps->dc.shaping_acc [0]) / (int32_t) wps->wphdr.block_samples;
wps->dc.shaping_delta [1] = (-wps->dc.shaping_acc [1] - wps->dc.shaping_acc [1]) / (int32_t) wps->wphdr.block_samples;
}
#endif
byteptr = wpmd->data = malloc (12);
wpmd->id = ID_SHAPING_WEIGHTS;
wps->dc.error [0] = exp2s (temp = log2s (wps->dc.error [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
wps->dc.shaping_acc [0] = exp2s (temp = log2s (wps->dc.shaping_acc [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
if (!(wps->wphdr.flags & MONO_FLAG)) {
wps->dc.error [1] = exp2s (temp = log2s (wps->dc.error [1]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
wps->dc.shaping_acc [1] = exp2s (temp = log2s (wps->dc.shaping_acc [1]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
if (wps->dc.shaping_delta [0] | wps->dc.shaping_delta [1]) {
wps->dc.shaping_delta [0] = exp2s (temp = log2s (wps->dc.shaping_delta [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
if (!(wps->wphdr.flags & MONO_FLAG)) {
wps->dc.shaping_delta [1] = exp2s (temp = log2s (wps->dc.shaping_delta [1]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
}
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Allocate room for and copy the int32 data values into the specified
// metadata structure. This data is used for integer data that has more
// than 24 bits of magnitude or, in some cases, it's used to eliminate
// redundant bits from any audio stream.
void write_int32_info (WavpackStream *wps, WavpackMetadata *wpmd)
{
char *byteptr;
byteptr = wpmd->data = malloc (4);
wpmd->id = ID_INT32_INFO;
*byteptr++ = wps->int32_sent_bits;
*byteptr++ = wps->int32_zeros;
*byteptr++ = wps->int32_ones;
*byteptr++ = wps->int32_dups;
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Allocate room for and copy the multichannel information into the specified
// metadata structure. The first byte is the total number of channels and the
// following bytes represent the channel_mask as described for Microsoft
// WAVEFORMATEX.
void write_channel_info (WavpackContext *wpc, WavpackMetadata *wpmd)
{
uint32_t mask = wpc->config.channel_mask;
char *byteptr;
byteptr = wpmd->data = malloc (4);
wpmd->id = ID_CHANNEL_INFO;
*byteptr++ = wpc->config.num_channels;
while (mask) {
*byteptr++ = mask;
mask >>= 8;
}
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Allocate room for and copy the configuration information into the specified
// metadata structure. Currently, we just store the upper 3 bytes of
// config.flags and only in the first block of audio data. Note that this is
// for informational purposes not required for playback or decoding (like
// whether high or fast mode was specified).
void write_config_info (WavpackContext *wpc, WavpackMetadata *wpmd)
{
char *byteptr;
byteptr = wpmd->data = malloc (4);
wpmd->id = ID_CONFIG_BLOCK;
*byteptr++ = (char) (wpc->config.flags >> 8);
*byteptr++ = (char) (wpc->config.flags >> 16);
*byteptr++ = (char) (wpc->config.flags >> 24);
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Pack an entire block of samples (either mono or stereo) into a completed
// WavPack block. This function is actually a shell for pack_samples() and
// performs tasks like handling any shift required by the format, preprocessing
// of floating point data or integer data over 24 bits wide, and implementing
// the "extra" mode (via the extra?.c modules). It is assumed that there is
// sufficient space for the completed block at "wps->blockbuff" and that
// "wps->blockend" points to the end of the available space. A return value of
// FALSE indicates an error.
static int scan_int32_data (WavpackStream *wps, int32_t *values, int32_t num_values);
static void send_int32_data (WavpackStream *wps, int32_t *values, int32_t num_values);
static int pack_samples (WavpackContext *wpc, int32_t *buffer);
int pack_block (WavpackContext *wpc, int32_t *buffer)
{
WavpackStream *wps = wpc->streams [wpc->current_stream];
uint32_t flags = wps->wphdr.flags, sflags = wps->wphdr.flags;
uint32_t sample_count = wps->wphdr.block_samples;
int32_t *orig_data = NULL;
if (flags & SHIFT_MASK) {
int shift = (flags & SHIFT_MASK) >> SHIFT_LSB;
int mag = (flags & MAG_MASK) >> MAG_LSB;
uint32_t cnt = sample_count;
int32_t *ptr = buffer;
if (flags & MONO_FLAG)
while (cnt--)
*ptr++ >>= shift;
else
while (cnt--) {
*ptr++ >>= shift;
*ptr++ >>= shift;
}
if ((mag -= shift) < 0)
flags &= ~MAG_MASK;
else
flags -= (1 << MAG_LSB) * shift;
wps->wphdr.flags = flags;
}
if ((flags & FLOAT_DATA) || (flags & MAG_MASK) >> MAG_LSB >= 24) {
if ((!(flags & HYBRID_FLAG) || wpc->wvc_flag) && !(wpc->config.flags & CONFIG_SKIP_WVX)) {
orig_data = malloc (sizeof (f32) * ((flags & MONO_FLAG) ? sample_count : sample_count * 2));
memcpy (orig_data, buffer, sizeof (f32) * ((flags & MONO_FLAG) ? sample_count : sample_count * 2));
if (flags & FLOAT_DATA) {
wps->float_norm_exp = wpc->config.float_norm_exp;
if (!scan_float_data (wps, (f32 *) buffer, (flags & MONO_FLAG) ? sample_count : sample_count * 2)) {
free (orig_data);
orig_data = NULL;
}
}
else {
if (!scan_int32_data (wps, buffer, (flags & MONO_FLAG) ? sample_count : sample_count * 2)) {
free (orig_data);
orig_data = NULL;
}
}
}
else {
if (flags & FLOAT_DATA) {
wps->float_norm_exp = wpc->config.float_norm_exp;
if (scan_float_data (wps, (f32 *) buffer, (flags & MONO_FLAG) ? sample_count : sample_count * 2))
wpc->lossy_blocks = TRUE;
}
else if (scan_int32_data (wps, buffer, (flags & MONO_FLAG) ? sample_count : sample_count * 2))
wpc->lossy_blocks = TRUE;
}
wpc->config.extra_flags |= EXTRA_SCAN_ONLY;
}
else if (wpc->config.extra_flags)
scan_int32_data (wps, buffer, (flags & MONO_FLAG) ? sample_count : sample_count * 2);
if (wpc->config.extra_flags) {
if (flags & MONO_FLAG)
analyze_mono (wpc, buffer);
else
analyze_stereo (wpc, buffer);
}
else if (!wps->sample_index || !wps->num_terms) {
wpc->config.extra_flags = EXTRA_SCAN_ONLY;
if (flags & MONO_FLAG)
analyze_mono (wpc, buffer);
else
analyze_stereo (wpc, buffer);
wpc->config.extra_flags = 0;
}
if (!pack_samples (wpc, buffer)) {
wps->wphdr.flags = sflags;
if (orig_data)
free (orig_data);
return FALSE;
}
else
wps->wphdr.flags = sflags;
if (orig_data) {
uint32_t data_count;
uchar *cptr;
if (wpc->wvc_flag)
cptr = wps->block2buff + ((WavpackHeader *) wps->block2buff)->ckSize + 8;
else
cptr = wps->blockbuff + ((WavpackHeader *) wps->blockbuff)->ckSize + 8;
bs_open_write (&wps->wvxbits, cptr + 8, wpc->wvc_flag ? wps->block2end : wps->blockend);
if (flags & FLOAT_DATA)
send_float_data (wps, (f32*) orig_data, (flags & MONO_FLAG) ? sample_count : sample_count * 2);
else
send_int32_data (wps, orig_data, (flags & MONO_FLAG) ? sample_count : sample_count * 2);
data_count = bs_close_write (&wps->wvxbits);
free (orig_data);
if (data_count) {
if (data_count != (uint32_t) -1) {
*cptr++ = ID_WVX_BITSTREAM | ID_LARGE;
*cptr++ = (data_count += 4) >> 1;
*cptr++ = data_count >> 9;
*cptr++ = data_count >> 17;
*cptr++ = wps->crc_x;
*cptr++ = wps->crc_x >> 8;
*cptr++ = wps->crc_x >> 16;
*cptr = wps->crc_x >> 24;
if (wpc->wvc_flag)
((WavpackHeader *) wps->block2buff)->ckSize += data_count + 4;
else
((WavpackHeader *) wps->blockbuff)->ckSize += data_count + 4;
}
else
return FALSE;
}
}
return TRUE;
}
// Scan a buffer of long integer data and determine whether any redundancy in
// the LSBs can be used to reduce the data's magnitude. If yes, then the
// INT32_DATA flag is set and the int32 parameters are set. If bits must still
// be transmitted literally to get down to 24 bits (which is all the integer
// compression code can handle) then we return TRUE to indicate that a wvx
// stream must be created in either lossless mode.
static int scan_int32_data (WavpackStream *wps, int32_t *values, int32_t num_values)
{
uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
uint32_t crc = 0xffffffff;
int total_shift = 0;
int32_t *dp, count;
wps->int32_sent_bits = wps->int32_zeros = wps->int32_ones = wps->int32_dups = 0;
for (dp = values, count = num_values; count--; dp++) {
crc = crc * 9 + (*dp & 0xffff) * 3 + ((*dp >> 16) & 0xffff);
magdata |= (*dp < 0) ? ~*dp : *dp;
xordata |= *dp ^ -(*dp & 1);
anddata &= *dp;
ordata |= *dp;
}
wps->crc_x = crc;
wps->wphdr.flags &= ~MAG_MASK;
while (magdata) {
wps->wphdr.flags += 1 << MAG_LSB;
magdata >>= 1;
}
if (!((wps->wphdr.flags & MAG_MASK) >> MAG_LSB)) {
wps->wphdr.flags &= ~INT32_DATA;
return FALSE;
}
if (!(ordata & 1))
while (!(ordata & 1)) {
wps->wphdr.flags -= 1 << MAG_LSB;
wps->int32_zeros++;
total_shift++;
ordata >>= 1;
}
else if (anddata & 1)
while (anddata & 1) {
wps->wphdr.flags -= 1 << MAG_LSB;
wps->int32_ones++;
total_shift++;
anddata >>= 1;
}
else if (!(xordata & 2))
while (!(xordata & 2)) {
wps->wphdr.flags -= 1 << MAG_LSB;
wps->int32_dups++;
total_shift++;
xordata >>= 1;
}
if (((wps->wphdr.flags & MAG_MASK) >> MAG_LSB) > 23) {
wps->int32_sent_bits = ((wps->wphdr.flags & MAG_MASK) >> MAG_LSB) - 23;
total_shift += wps->int32_sent_bits;
wps->wphdr.flags &= ~MAG_MASK;
wps->wphdr.flags += 23 << MAG_LSB;
}
if (total_shift) {
wps->wphdr.flags |= INT32_DATA;
for (dp = values, count = num_values; count--; dp++)
*dp >>= total_shift;
}
#if 0
if (wps->int32_sent_bits + wps->int32_zeros + wps->int32_ones + wps->int32_dups)
error_line ("sent bits = %d, zeros/ones/dups = %d/%d/%d", wps->int32_sent_bits,
wps->int32_zeros, wps->int32_ones, wps->int32_dups);
#endif
return wps->int32_sent_bits;
}
// For the specified buffer values and the int32 parameters stored in "wps",
// send the literal bits required to the "wvxbits" bitstream.
static void send_int32_data (WavpackStream *wps, int32_t *values, int32_t num_values)
{
int sent_bits = wps->int32_sent_bits, pre_shift;
int32_t mask = (1 << sent_bits) - 1;
int32_t count, value, *dp;
pre_shift = wps->int32_zeros + wps->int32_ones + wps->int32_dups;
if (sent_bits)
for (dp = values, count = num_values; count--; dp++) {
value = (*dp >> pre_shift) & mask;
putbits (value, sent_bits, &wps->wvxbits);
}
}
// Pack an entire block of samples (either mono or stereo) into a completed
// WavPack block. It is assumed that there is sufficient space for the
// completed block at "wps->blockbuff" and that "wps->blockend" points to the
// end of the available space. A return value of FALSE indicates an error.
// Any unsent metadata is transmitted first, then required metadata for this
// block is sent, and finally the compressed integer data is sent. If a "wpx"
// stream is required for floating point data or large integer data, then this
// must be handled outside this function. To find out how much data was written
// the caller must look at the ckSize field of the written WavpackHeader, NOT
// the one in the WavpackStream.
static void decorr_stereo_pass (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count);
static void decorr_stereo_pass_i (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count);
static void decorr_stereo_pass_id2 (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count);
static int pack_samples (WavpackContext *wpc, int32_t *buffer)
{
WavpackStream *wps = wpc->streams [wpc->current_stream];
uint32_t sample_count = wps->wphdr.block_samples;
uint32_t flags = wps->wphdr.flags, data_count;
int mag16 = ((flags & MAG_MASK) >> MAG_LSB) >= 16;
int tcount, lossy = FALSE, m = 0;
double noise_acc = 0.0, noise;
struct decorr_pass *dpp;
WavpackMetadata wpmd;
uint32_t crc, crc2, i;
int32_t *bptr;
crc = crc2 = 0xffffffff;
wps->wphdr.ckSize = sizeof (WavpackHeader) - 8;
memcpy (wps->blockbuff, &wps->wphdr, sizeof (WavpackHeader));
if (wpc->metacount) {
WavpackMetadata *wpmdp = wpc->metadata;
while (wpc->metacount) {
copy_metadata (wpmdp, wps->blockbuff, wps->blockend);
wpc->metabytes -= wpmdp->byte_length;
free_metadata (wpmdp++);
wpc->metacount--;
}
free (wpc->metadata);
wpc->metadata = NULL;
}
if (!sample_count)
return TRUE;
write_decorr_terms (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
write_decorr_weights (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
write_decorr_samples (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
write_entropy_vars (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
if (flags & HYBRID_FLAG) {
write_hybrid_profile (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
}
if (flags & FLOAT_DATA) {
write_float_info (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
}
if (flags & INT32_DATA) {
write_int32_info (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
}
if ((flags & INITIAL_BLOCK) &&
(wpc->config.num_channels > 2 ||
wpc->config.channel_mask != 0x5 - wpc->config.num_channels)) {
write_channel_info (wpc, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
}
if ((flags & INITIAL_BLOCK) && !wps->sample_index) {
write_config_info (wpc, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
}
bs_open_write (&wps->wvbits, wps->blockbuff + ((WavpackHeader *) wps->blockbuff)->ckSize + 12, wps->blockend);
if (wpc->wvc_flag) {
wps->wphdr.ckSize = sizeof (WavpackHeader) - 8;
memcpy (wps->block2buff, &wps->wphdr, sizeof (WavpackHeader));
if (flags & HYBRID_SHAPE) {
write_shaping_info (wps, &wpmd);
copy_metadata (&wpmd, wps->block2buff, wps->block2end);
free_metadata (&wpmd);
}
bs_open_write (&wps->wvcbits, wps->block2buff + ((WavpackHeader *) wps->block2buff)->ckSize + 12, wps->block2end);
}
/////////////////////// handle lossless mono mode /////////////////////////
if (!(flags & HYBRID_FLAG) && (flags & MONO_FLAG))
for (bptr = buffer, i = 0; i < sample_count; ++i) {
int32_t code;
crc = crc * 3 + (code = *bptr++);
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) {
int32_t sam;
if (dpp->term > MAX_TERM) {
if (dpp->term & 1)
sam = 2 * dpp->samples_A [0] - dpp->samples_A [1];
else
sam = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = code;
}
else {
sam = dpp->samples_A [m];
dpp->samples_A [(m + dpp->term) & (MAX_TERM - 1)] = code;
}
code -= apply_weight (dpp->weight_A, sam);
update_weight (dpp->weight_A, dpp->delta, sam, code);
}
m = (m + 1) & (MAX_TERM - 1);
send_word_lossless (wps, code, 0);
}
//////////////////// handle the lossless stereo mode //////////////////////
#ifdef FAST_ENCODE
else if (!(flags & HYBRID_FLAG) && !(flags & MONO_FLAG)) {
int32_t *eptr = buffer + (sample_count * 2), sam_A, sam_B;
if (flags & JOINT_STEREO)
for (bptr = buffer; bptr < eptr; bptr += 2) {
crc = crc * 9 + bptr [0] * 3 + bptr [1];
bptr [1] += ((bptr [0] -= bptr [1]) >> 1);
}
else
for (bptr = buffer; bptr < eptr; bptr += 2)
crc = crc * 9 + bptr [0] * 3 + bptr [1];
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount-- ; dpp++)
if (((flags & MAG_MASK) >> MAG_LSB) >= 16)
decorr_stereo_pass (dpp, buffer, sample_count);
else if (dpp->delta != 2)
decorr_stereo_pass_i (dpp, buffer, sample_count);
else
decorr_stereo_pass_id2 (dpp, buffer, sample_count);
for (bptr = buffer; bptr < eptr; bptr += 2) {
send_word_lossless (wps, bptr [0], 0);
send_word_lossless (wps, bptr [1], 1);
}
m = sample_count & (MAX_TERM - 1);
}
#else
else if (!(flags & HYBRID_FLAG) && !(flags & MONO_FLAG))
for (bptr = buffer, i = 0; i < sample_count; ++i, bptr += 2) {
int32_t left, right, sam_A, sam_B;
crc = crc * 3 + (left = bptr [0]);
crc = crc * 3 + (right = bptr [1]);
if (flags & JOINT_STEREO)
right += ((left -= right) >> 1);
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount-- ; dpp++) {
if (dpp->term > 0) {
if (dpp->term > MAX_TERM) {
if (dpp->term & 1) {
sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1];
sam_B = 2 * dpp->samples_B [0] - dpp->samples_B [1];
}
else {
sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
sam_B = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
}
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_A [0] = left;
dpp->samples_B [0] = right;
}
else {
int k = (m + dpp->term) & (MAX_TERM - 1);
sam_A = dpp->samples_A [m];
sam_B = dpp->samples_B [m];
dpp->samples_A [k] = left;
dpp->samples_B [k] = right;
}
left -= apply_weight (dpp->weight_A, sam_A);
right -= apply_weight (dpp->weight_B, sam_B);
update_weight (dpp->weight_A, dpp->delta, sam_A, left);
update_weight (dpp->weight_B, dpp->delta, sam_B, right);
}
else {
sam_A = (dpp->term == -2) ? right : dpp->samples_A [0];
sam_B = (dpp->term == -1) ? left : dpp->samples_B [0];
dpp->samples_A [0] = right;
dpp->samples_B [0] = left;
left -= apply_weight (dpp->weight_A, sam_A);
right -= apply_weight (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_A, dpp->delta, sam_A, left);
update_weight_clip (dpp->weight_B, dpp->delta, sam_B, right);
}
}
m = (m + 1) & (MAX_TERM - 1);
send_word_lossless (wps, left, 0);
send_word_lossless (wps, right, 1);
}
#endif
/////////////////// handle the lossy/hybrid mono mode /////////////////////
else if ((flags & HYBRID_FLAG) && (flags & MONO_FLAG))
for (bptr = buffer, i = 0; i < sample_count; ++i) {
int32_t code, temp;
crc2 = crc2 * 3 + (code = *bptr++);
if (flags & HYBRID_SHAPE) {
int shaping_weight = (wps->dc.shaping_acc [0] += wps->dc.shaping_delta [0]) >> 16;
temp = -apply_weight (shaping_weight, wps->dc.error [0]);
if ((flags & NEW_SHAPING) && shaping_weight < 0 && temp) {
if (temp == wps->dc.error [0])
temp = (temp < 0) ? temp + 1 : temp - 1;
wps->dc.error [0] = -code;
code += temp;
}
else
wps->dc.error [0] = -(code += temp);
}
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount-- ; dpp++)
if (dpp->term > MAX_TERM) {
if (dpp->term & 1)
dpp->samples_A [2] = 2 * dpp->samples_A [0] - dpp->samples_A [1];
else
dpp->samples_A [2] = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
code -= (dpp->aweight_A = apply_weight (dpp->weight_A, dpp->samples_A [2]));
}
else
code -= (dpp->aweight_A = apply_weight (dpp->weight_A, dpp->samples_A [m]));
code = send_word (wps, code, 0);
while (--dpp >= wps->decorr_passes) {
if (dpp->term > MAX_TERM) {
update_weight (dpp->weight_A, dpp->delta, dpp->samples_A [2], code);
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = (code += dpp->aweight_A);
}
else {
int32_t sam = dpp->samples_A [m];
update_weight (dpp->weight_A, dpp->delta, sam, code);
dpp->samples_A [(m + dpp->term) & (MAX_TERM - 1)] = (code += dpp->aweight_A);
}
}
wps->dc.error [0] += code;
m = (m + 1) & (MAX_TERM - 1);
if ((crc = crc * 3 + code) != crc2)
lossy = TRUE;
if (wpc->config.flags & CONFIG_CALC_NOISE) {
noise = code - bptr [-1];
noise_acc += noise *= noise;
wps->dc.noise_ave = (wps->dc.noise_ave * 0.99) + (noise * 0.01);
if (wps->dc.noise_ave > wps->dc.noise_max)
wps->dc.noise_max = wps->dc.noise_ave;
}
}
/////////////////// handle the lossy/hybrid stereo mode ///////////////////
else if ((flags & HYBRID_FLAG) && !(flags & MONO_FLAG))
for (bptr = buffer, i = 0; i < sample_count; ++i) {
int32_t left, right, temp;
int shaping_weight;
left = *bptr++;
crc2 = (crc2 * 3 + left) * 3 + (right = *bptr++);
if (flags & HYBRID_SHAPE) {
shaping_weight = (wps->dc.shaping_acc [0] += wps->dc.shaping_delta [0]) >> 16;
temp = -apply_weight (shaping_weight, wps->dc.error [0]);
if ((flags & NEW_SHAPING) && shaping_weight < 0 && temp) {
if (temp == wps->dc.error [0])
temp = (temp < 0) ? temp + 1 : temp - 1;
wps->dc.error [0] = -left;
left += temp;
}
else
wps->dc.error [0] = -(left += temp);
shaping_weight = (wps->dc.shaping_acc [1] += wps->dc.shaping_delta [1]) >> 16;
temp = -apply_weight (shaping_weight, wps->dc.error [1]);
if ((flags & NEW_SHAPING) && shaping_weight < 0 && temp) {
if (temp == wps->dc.error [1])
temp = (temp < 0) ? temp + 1 : temp - 1;
wps->dc.error [1] = -right;
right += temp;
}
else
wps->dc.error [1] = -(right += temp);
}
if (flags & JOINT_STEREO)
right += ((left -= right) >> 1);
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount-- ; dpp++)
if (dpp->term > MAX_TERM) {
if (dpp->term & 1) {
dpp->samples_A [2] = 2 * dpp->samples_A [0] - dpp->samples_A [1];
dpp->samples_B [2] = 2 * dpp->samples_B [0] - dpp->samples_B [1];
}
else {
dpp->samples_A [2] = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
dpp->samples_B [2] = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
}
left -= (dpp->aweight_A = apply_weight (dpp->weight_A, dpp->samples_A [2]));
right -= (dpp->aweight_B = apply_weight (dpp->weight_B, dpp->samples_B [2]));
}
else if (dpp->term > 0) {
left -= (dpp->aweight_A = apply_weight (dpp->weight_A, dpp->samples_A [m]));
right -= (dpp->aweight_B = apply_weight (dpp->weight_B, dpp->samples_B [m]));
}
else {
if (dpp->term == -1)
dpp->samples_B [0] = left;
else if (dpp->term == -2)
dpp->samples_A [0] = right;
left -= (dpp->aweight_A = apply_weight (dpp->weight_A, dpp->samples_A [0]));
right -= (dpp->aweight_B = apply_weight (dpp->weight_B, dpp->samples_B [0]));
}
#if 0
if (labs (left) > 60000000 || labs (right) > 60000000)
error_line ("sending %d, %d; samples = %d, %d", left, right, bptr [-2], bptr [-1]);
#endif
left = send_word (wps, left, 0);
right = send_word (wps, right, 1);
while (--dpp >= wps->decorr_passes)
if (dpp->term > MAX_TERM) {
update_weight (dpp->weight_A, dpp->delta, dpp->samples_A [2], left);
update_weight (dpp->weight_B, dpp->delta, dpp->samples_B [2], right);
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_A [0] = (left += dpp->aweight_A);
dpp->samples_B [0] = (right += dpp->aweight_B);
}
else if (dpp->term > 0) {
int k = (m + dpp->term) & (MAX_TERM - 1);
update_weight (dpp->weight_A, dpp->delta, dpp->samples_A [m], left);
dpp->samples_A [k] = (left += dpp->aweight_A);
update_weight (dpp->weight_B, dpp->delta, dpp->samples_B [m], right);
dpp->samples_B [k] = (right += dpp->aweight_B);
}
else {
if (dpp->term == -1) {
dpp->samples_B [0] = left + dpp->aweight_A;
dpp->aweight_B = apply_weight (dpp->weight_B, dpp->samples_B [0]);
}
else if (dpp->term == -2) {
dpp->samples_A [0] = right + dpp->aweight_B;
dpp->aweight_A = apply_weight (dpp->weight_A, dpp->samples_A [0]);
}
update_weight_clip (dpp->weight_A, dpp->delta, dpp->samples_A [0], left);
update_weight_clip (dpp->weight_B, dpp->delta, dpp->samples_B [0], right);
dpp->samples_B [0] = (left += dpp->aweight_A);
dpp->samples_A [0] = (right += dpp->aweight_B);
}
if (flags & JOINT_STEREO)
left += (right -= (left >> 1));
wps->dc.error [0] += left;
wps->dc.error [1] += right;
m = (m + 1) & (MAX_TERM - 1);
if ((crc = (crc * 3 + left) * 3 + right) != crc2)
lossy = TRUE;
if (wpc->config.flags & CONFIG_CALC_NOISE) {
noise = (double)(left - bptr [-2]) * (left - bptr [-2]);
noise += (double)(right - bptr [-1]) * (right - bptr [-1]);
noise_acc += noise /= 2.0;
wps->dc.noise_ave = (wps->dc.noise_ave * 0.99) + (noise * 0.01);
if (wps->dc.noise_ave > wps->dc.noise_max)
wps->dc.noise_max = wps->dc.noise_ave;
}
}
if (m)
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++)
if (dpp->term > 0 && dpp->term <= MAX_TERM) {
int32_t temp_A [MAX_TERM], temp_B [MAX_TERM];
int k;
memcpy (temp_A, dpp->samples_A, sizeof (dpp->samples_A));
memcpy (temp_B, dpp->samples_B, sizeof (dpp->samples_B));
for (k = 0; k < MAX_TERM; k++) {
dpp->samples_A [k] = temp_A [m];
dpp->samples_B [k] = temp_B [m];
m = (m + 1) & (MAX_TERM - 1);
}
}
if (wpc->config.flags & CONFIG_CALC_NOISE)
wps->dc.noise_sum += noise_acc;
flush_word (wps);
data_count = bs_close_write (&wps->wvbits);
if (data_count) {
if (data_count != (uint32_t) -1) {
uchar *cptr = wps->blockbuff + ((WavpackHeader *) wps->blockbuff)->ckSize + 8;
*cptr++ = ID_WV_BITSTREAM | ID_LARGE;
*cptr++ = data_count >> 1;
*cptr++ = data_count >> 9;
*cptr++ = data_count >> 17;
((WavpackHeader *) wps->blockbuff)->ckSize += data_count + 4;
}
else
return FALSE;
}
((WavpackHeader *) wps->blockbuff)->crc = crc;
if (wpc->wvc_flag) {
data_count = bs_close_write (&wps->wvcbits);
if (data_count && lossy) {
if (data_count != (uint32_t) -1) {
uchar *cptr = wps->block2buff + ((WavpackHeader *) wps->block2buff)->ckSize + 8;
*cptr++ = ID_WVC_BITSTREAM | ID_LARGE;
*cptr++ = data_count >> 1;
*cptr++ = data_count >> 9;
*cptr++ = data_count >> 17;
((WavpackHeader *) wps->block2buff)->ckSize += data_count + 4;
}
else
return FALSE;
}
((WavpackHeader *) wps->block2buff)->crc = crc2;
}
else if (lossy)
wpc->lossy_blocks = TRUE;
wps->sample_index += sample_count;
return TRUE;
}
#ifdef FAST_ENCODE
static void decorr_stereo_pass_id2 (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count)
{
int32_t *bptr, *eptr = buffer + (sample_count * 2), sam_A, sam_B;
int m, k;
switch (dpp->term) {
case 17:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1];
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_d2 (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = 2 * dpp->samples_B [0] - dpp->samples_B [1];
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [1];
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_d2 (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case 18:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_d2 (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [1];
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_d2 (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case 8:
for (m = 0, bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [m];
dpp->samples_A [m] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_d2 (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = dpp->samples_B [m];
dpp->samples_B [m] = bptr [1];
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_d2 (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
m = (m + 1) & (MAX_TERM - 1);
}
break;
default:
for (m = 0, k = dpp->term & (MAX_TERM - 1), bptr = buffer; bptr < eptr; bptr += 2) {
dpp->samples_A [k] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, dpp->samples_A [m]);
update_weight_d2 (dpp->weight_A, dpp->delta, dpp->samples_A [m], bptr [0]);
dpp->samples_B [k] = bptr [1];
bptr [1] -= apply_weight_i (dpp->weight_B, dpp->samples_B [m]);
update_weight_d2 (dpp->weight_B, dpp->delta, dpp->samples_B [m], bptr [1]);
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
break;
case -1:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [0];
sam_B = bptr [0];
dpp->samples_A [0] = bptr [1];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_clip_d2 (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_clip_d2 (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case -2:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = bptr [1];
sam_B = dpp->samples_B [0];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_clip_d2 (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_clip_d2 (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case -3:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [0];
sam_B = dpp->samples_B [0];
dpp->samples_A [0] = bptr [1];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_clip_d2 (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_clip_d2 (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
}
}
static void decorr_stereo_pass_i (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count)
{
int32_t *bptr, *eptr = buffer + (sample_count * 2), sam_A, sam_B;
int m, k;
switch (dpp->term) {
case 17:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1];
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = 2 * dpp->samples_B [0] - dpp->samples_B [1];
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [1];
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case 18:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [1];
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
default:
for (m = 0, k = dpp->term & (MAX_TERM - 1), bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [m];
dpp->samples_A [k] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = dpp->samples_B [m];
dpp->samples_B [k] = bptr [1];
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
break;
case -1:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [0];
sam_B = bptr [0];
dpp->samples_A [0] = bptr [1];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_clip (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case -2:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = bptr [1];
sam_B = dpp->samples_B [0];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_clip (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case -3:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [0];
sam_B = dpp->samples_B [0];
dpp->samples_A [0] = bptr [1];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_clip (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
}
}
static void decorr_stereo_pass (struct decorr_pass *dpp, int32_t *buffer, int32_t sample_count)
{
int32_t *bptr, *eptr = buffer + (sample_count * 2), sam_A, sam_B;
int m, k;
switch (dpp->term) {
case 17:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1];
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight (dpp->weight_A, sam_A);
update_weight (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = 2 * dpp->samples_B [0] - dpp->samples_B [1];
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [1];
bptr [1] -= apply_weight (dpp->weight_B, sam_B);
update_weight (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case 18:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight (dpp->weight_A, sam_A);
update_weight (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [1];
bptr [1] -= apply_weight (dpp->weight_B, sam_B);
update_weight (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
default:
for (m = 0, k = dpp->term & (MAX_TERM - 1), bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [m];
dpp->samples_A [k] = bptr [0];
bptr [0] -= apply_weight (dpp->weight_A, sam_A);
update_weight (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
sam_B = dpp->samples_B [m];
dpp->samples_B [k] = bptr [1];
bptr [1] -= apply_weight (dpp->weight_B, sam_B);
update_weight (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
break;
case -1:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [0];
sam_B = bptr [0];
dpp->samples_A [0] = bptr [1];
bptr [0] -= apply_weight (dpp->weight_A, sam_A);
update_weight_clip (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case -2:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = bptr [1];
sam_B = dpp->samples_B [0];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight (dpp->weight_A, sam_A);
update_weight_clip (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
case -3:
for (bptr = buffer; bptr < eptr; bptr += 2) {
sam_A = dpp->samples_A [0];
sam_B = dpp->samples_B [0];
dpp->samples_A [0] = bptr [1];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight (dpp->weight_A, sam_A);
update_weight_clip (dpp->weight_A, dpp->delta, sam_A, bptr [0]);
bptr [1] -= apply_weight (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_B, dpp->delta, sam_B, bptr [1]);
}
break;
}
}
#endif
//////////////////////////////////////////////////////////////////////////////
// This function returns the accumulated RMS noise as a double if the //
// CALC_NOISE bit was set in the WavPack header. The peak noise can also be //
// returned if desired. See wavpack.c for the calculations required to //
// convert this into decibels of noise below full scale. //
//////////////////////////////////////////////////////////////////////////////
double pack_noise (WavpackContext *wpc, double *peak)
{
WavpackStream *wps = wpc->streams [wpc->current_stream];
if (peak)
*peak = wps->dc.noise_max;
return wps->dc.noise_sum;
}