cog/Frameworks/WavPack/Files/common_utils.c

703 lines
23 KiB
C

////////////////////////////////////////////////////////////////////////////
// **** WAVPACK **** //
// Hybrid Lossless Wavefile Compressor //
// Copyright (c) 1998 - 2013 Conifer Software. //
// All Rights Reserved. //
// Distributed under the BSD Software License (see license.txt) //
////////////////////////////////////////////////////////////////////////////
// common_utils.c
// This module provides a lot of the trivial WavPack API functions and several
// functions that are common to both reading and writing WavPack files (like
// WavpackCloseFile()). Functions here are restricted to those that have few
// external dependancies and this is done so that applications that statically
// link to the WavPack library (like the command-line utilities on Windows)
// do not need to include the entire library image if they only use a subset
// of it. This module will be loaded for ANY WavPack application.
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "wavpack_local.h"
#ifndef LIBWAVPACK_VERSION_STRING
#include "wavpack_version.h"
#endif
///////////////////////////// local table storage ////////////////////////////
const uint32_t sample_rates [] = { 6000, 8000, 9600, 11025, 12000, 16000, 22050,
24000, 32000, 44100, 48000, 64000, 88200, 96000, 192000 };
///////////////////////////// executable code ////////////////////////////////
// This function obtains general information about an open input file and
// returns a mask with the following bit values:
// MODE_WVC: a .wvc file has been found and will be used for lossless
// MODE_LOSSLESS: file is lossless (either pure or hybrid)
// MODE_HYBRID: file is hybrid mode (either lossy or lossless)
// MODE_FLOAT: audio data is 32-bit ieee floating point
// MODE_VALID_TAG: file conatins a valid ID3v1 or APEv2 tag
// MODE_HIGH: file was created in "high" mode (information only)
// MODE_FAST: file was created in "fast" mode (information only)
// MODE_EXTRA: file was created using "extra" mode (information only)
// MODE_APETAG: file contains a valid APEv2 tag
// MODE_SFX: file was created as a "self-extracting" executable
// MODE_VERY_HIGH: file was created in the "very high" mode (or in
// the "high" mode prior to 4.4)
// MODE_MD5: file contains an MD5 checksum
// MODE_XMODE: level used for extra mode (1-6, 0=unknown)
// MODE_DNS: dynamic noise shaping
int WavpackGetMode (WavpackContext *wpc)
{
int mode = 0;
if (wpc) {
if (wpc->config.flags & CONFIG_HYBRID_FLAG)
mode |= MODE_HYBRID;
else if (!(wpc->config.flags & CONFIG_LOSSY_MODE))
mode |= MODE_LOSSLESS;
if (wpc->wvc_flag)
mode |= (MODE_LOSSLESS | MODE_WVC);
if (wpc->lossy_blocks)
mode &= ~MODE_LOSSLESS;
if (wpc->config.flags & CONFIG_FLOAT_DATA)
mode |= MODE_FLOAT;
if (wpc->config.flags & (CONFIG_HIGH_FLAG | CONFIG_VERY_HIGH_FLAG)) {
mode |= MODE_HIGH;
if ((wpc->config.flags & CONFIG_VERY_HIGH_FLAG) ||
(wpc->streams && wpc->streams [0] && wpc->streams [0]->wphdr.version < 0x405))
mode |= MODE_VERY_HIGH;
}
if (wpc->config.flags & CONFIG_FAST_FLAG)
mode |= MODE_FAST;
if (wpc->config.flags & CONFIG_EXTRA_MODE)
mode |= (MODE_EXTRA | (wpc->config.xmode << 12));
if (wpc->config.flags & CONFIG_CREATE_EXE)
mode |= MODE_SFX;
if (wpc->config.flags & CONFIG_MD5_CHECKSUM)
mode |= MODE_MD5;
if ((wpc->config.flags & CONFIG_HYBRID_FLAG) && (wpc->config.flags & CONFIG_DYNAMIC_SHAPING) &&
wpc->streams && wpc->streams [0] && wpc->streams [0]->wphdr.version >= 0x407)
mode |= MODE_DNS;
#ifndef NO_TAGS
if (valid_tag (&wpc->m_tag)) {
mode |= MODE_VALID_TAG;
if (valid_tag (&wpc->m_tag) == 'A')
mode |= MODE_APETAG;
}
#endif
mode |= (wpc->config.qmode << 16) & 0xFF0000;
}
return mode;
}
// This function obtains information about specific file features that were
// added for version 5.0, specifically qualifications added to support CAF
// and DSD files. Except for indicating the presence of DSD data, these
// bits are meant to simply indicate the format of the data in the original
// source file and do NOT indicate how the library will return the data to
// the appication (which is always the same). This means that in general an
// application that simply wants to play or process the audio data need not
// be concerned about these. If the file is DSD audio, then either of the
// QMDOE_DSD_LSB_FIRST or QMODE_DSD_MSB_FIRST bits will be set (but the
// DSD audio is always returned to the caller MSB first).
// QMODE_BIG_ENDIAN 0x1 // big-endian data format (opposite of WAV format)
// QMODE_SIGNED_BYTES 0x2 // 8-bit audio data is signed (opposite of WAV format)
// QMODE_UNSIGNED_WORDS 0x4 // audio data (other than 8-bit) is unsigned (opposite of WAV format)
// QMODE_REORDERED_CHANS 0x8 // source channels were not Microsoft order, so they were reordered
// QMODE_DSD_LSB_FIRST 0x10 // DSD bytes, LSB first (most Sony .dsf files)
// QMODE_DSD_MSB_FIRST 0x20 // DSD bytes, MSB first (Philips .dff files)
// QMODE_DSD_IN_BLOCKS 0x40 // DSD data is blocked by channels (Sony .dsf only)
int WavpackGetQualifyMode (WavpackContext *wpc)
{
return wpc->config.qmode & 0xFF;
}
// This function returns a pointer to a string describing the last error
// generated by WavPack.
char *WavpackGetErrorMessage (WavpackContext *wpc)
{
return wpc->error_message;
}
// Get total number of samples contained in the WavPack file, or -1 if unknown
uint32_t WavpackGetNumSamples (WavpackContext *wpc)
{
return (uint32_t) WavpackGetNumSamples64 (wpc);
}
int64_t WavpackGetNumSamples64 (WavpackContext *wpc)
{
return wpc ? wpc->total_samples : -1;
}
// Get the current sample index position, or -1 if unknown
uint32_t WavpackGetSampleIndex (WavpackContext *wpc)
{
return (uint32_t) WavpackGetSampleIndex64 (wpc);
}
int64_t WavpackGetSampleIndex64 (WavpackContext *wpc)
{
if (wpc) {
#ifndef VER4_ONLY
if (wpc->stream3)
return get_sample_index3 (wpc);
else if (wpc->streams && wpc->streams [0])
return wpc->streams [0]->sample_index;
#else
if (wpc->streams && wpc->streams [0])
return wpc->streams [0]->sample_index;
#endif
}
return -1;
}
// Get the number of errors encountered so far
int WavpackGetNumErrors (WavpackContext *wpc)
{
return wpc ? wpc->crc_errors : 0;
}
// return TRUE if any uncorrected lossy blocks were actually written or read
int WavpackLossyBlocks (WavpackContext *wpc)
{
return wpc ? wpc->lossy_blocks : 0;
}
// Calculate the progress through the file as a double from 0.0 (for begin)
// to 1.0 (for done). A return value of -1.0 indicates that the progress is
// unknown.
double WavpackGetProgress (WavpackContext *wpc)
{
if (wpc && wpc->total_samples != -1 && wpc->total_samples != 0)
return (double) WavpackGetSampleIndex64 (wpc) / wpc->total_samples;
else
return -1.0;
}
// Return the total size of the WavPack file(s) in bytes.
uint32_t WavpackGetFileSize (WavpackContext *wpc)
{
return (uint32_t) (wpc ? wpc->filelen + wpc->file2len : 0);
}
int64_t WavpackGetFileSize64 (WavpackContext *wpc)
{
return wpc ? wpc->filelen + wpc->file2len : 0;
}
// Calculate the ratio of the specified WavPack file size to the size of the
// original audio data as a double greater than 0.0 and (usually) smaller than
// 1.0. A value greater than 1.0 represents "negative" compression and a
// return value of 0.0 indicates that the ratio cannot be determined.
double WavpackGetRatio (WavpackContext *wpc)
{
if (wpc && wpc->total_samples != -1 && wpc->filelen) {
double output_size = (double) wpc->total_samples * wpc->config.num_channels *
wpc->config.bytes_per_sample;
double input_size = (double) wpc->filelen + wpc->file2len;
if (output_size >= 1.0 && input_size >= 1.0)
return input_size / output_size;
}
return 0.0;
}
// Calculate the average bitrate of the WavPack file in bits per second. A
// return of 0.0 indicates that the bitrate cannot be determined. An option is
// provided to use (or not use) any attendant .wvc file.
double WavpackGetAverageBitrate (WavpackContext *wpc, int count_wvc)
{
if (wpc && wpc->total_samples != -1 && wpc->filelen) {
double output_time = (double) wpc->total_samples / WavpackGetSampleRate (wpc);
double input_size = (double) wpc->filelen + (count_wvc ? wpc->file2len : 0);
if (output_time >= 0.1 && input_size >= 1.0)
return input_size * 8.0 / output_time;
}
return 0.0;
}
// Calculate the bitrate of the current WavPack file block in bits per second.
// This can be used for an "instant" bit display and gets updated from about
// 1 to 4 times per second. A return of 0.0 indicates that the bitrate cannot
// be determined.
double WavpackGetInstantBitrate (WavpackContext *wpc)
{
if (wpc && wpc->stream3)
return WavpackGetAverageBitrate (wpc, TRUE);
if (wpc && wpc->streams && wpc->streams [0] && wpc->streams [0]->wphdr.block_samples) {
double output_time = (double) wpc->streams [0]->wphdr.block_samples / WavpackGetSampleRate (wpc);
double input_size = 0;
int si;
for (si = 0; si < wpc->num_streams; ++si) {
if (wpc->streams [si]->blockbuff)
input_size += ((WavpackHeader *) wpc->streams [si]->blockbuff)->ckSize;
if (wpc->streams [si]->block2buff)
input_size += ((WavpackHeader *) wpc->streams [si]->block2buff)->ckSize;
}
if (output_time > 0.0 && input_size >= 1.0)
return input_size * 8.0 / output_time;
}
return 0.0;
}
// This function allows retrieving the Core Audio File channel layout, many of which do not
// conform to the Microsoft ordering standard that WavPack requires internally (at least for
// those channels present in the "channel mask"). In addition to the layout tag, this function
// returns the reordering string (if stored in the file) to allow the unpacker to reorder the
// channels back to the specified layout (if it wants to restore the CAF order). The number of
// channels in the layout is determined from the lower nybble of the layout word (and should
// probably match the number of channels in the file), and if a reorder string is requested
// then that much space must be allocated. Note that all the reordering is actually done
// outside of this library, and that if reordering is done then the appropriate qmode bit
// will be set.
uint32_t WavpackGetChannelLayout (WavpackContext *wpc, unsigned char *reorder)
{
if ((wpc->channel_layout & 0xff) && wpc->channel_reordering && reorder)
memcpy (reorder, wpc->channel_reordering, wpc->channel_layout & 0xff);
return wpc->channel_layout;
}
// Close the specified WavPack file and release all resources used by it.
// Returns NULL.
WavpackContext *WavpackCloseFile (WavpackContext *wpc)
{
if (wpc->streams) {
free_streams (wpc);
if (wpc->streams [0])
free (wpc->streams [0]);
free (wpc->streams);
}
#ifndef VER4_ONLY
if (wpc->stream3)
free_stream3 (wpc);
#endif
if (wpc->reader && wpc->reader->close && wpc->wv_in)
wpc->reader->close (wpc->wv_in);
if (wpc->reader && wpc->reader->close && wpc->wvc_in)
wpc->reader->close (wpc->wvc_in);
WavpackFreeWrapper (wpc);
if (wpc->channel_reordering)
free (wpc->channel_reordering);
#ifndef NO_TAGS
free_tag (&wpc->m_tag);
#endif
if (wpc->decimation_context)
decimate_dsd_destroy (wpc->decimation_context);
free (wpc);
return NULL;
}
// These routines are used to access (and free) header and trailer data that
// was retrieved from the Wavpack file. The header will be available before
// the samples are decoded and the trailer will be available after all samples
// have been read.
uint32_t WavpackGetWrapperBytes (WavpackContext *wpc)
{
return wpc ? wpc->wrapper_bytes : 0;
}
unsigned char *WavpackGetWrapperData (WavpackContext *wpc)
{
return wpc ? wpc->wrapper_data : NULL;
}
void WavpackFreeWrapper (WavpackContext *wpc)
{
if (wpc && wpc->wrapper_data) {
free (wpc->wrapper_data);
wpc->wrapper_data = NULL;
wpc->wrapper_bytes = 0;
}
}
// Returns the sample rate of the specified WavPack file
uint32_t WavpackGetSampleRate (WavpackContext *wpc)
{
return wpc ? (wpc->dsd_multiplier ? wpc->config.sample_rate * wpc->dsd_multiplier : wpc->config.sample_rate) : 44100;
}
// Returns the number of channels of the specified WavPack file. Note that
// this is the actual number of channels contained in the file even if the
// OPEN_2CH_MAX flag was specified when the file was opened.
int WavpackGetNumChannels (WavpackContext *wpc)
{
return wpc ? wpc->config.num_channels : 2;
}
// Returns the standard Microsoft channel mask for the specified WavPack
// file. A value of zero indicates that there is no speaker assignment
// information.
int WavpackGetChannelMask (WavpackContext *wpc)
{
return wpc ? wpc->config.channel_mask : 0;
}
// Return the normalization value for floating point data (valid only
// if floating point data is present). A value of 127 indicates that
// the floating point range is +/- 1.0. Higher values indicate a
// larger floating point range.
int WavpackGetFloatNormExp (WavpackContext *wpc)
{
return wpc->config.float_norm_exp;
}
// Returns the actual number of valid bits per sample contained in the
// original file, which may or may not be a multiple of 8. Floating data
// always has 32 bits, integers may be from 1 to 32 bits each. When this
// value is not a multiple of 8, then the "extra" bits are located in the
// LSBs of the results. That is, values are right justified when unpacked
// into ints, but are left justified in the number of bytes used by the
// original data.
int WavpackGetBitsPerSample (WavpackContext *wpc)
{
return wpc ? wpc->config.bits_per_sample : 16;
}
// Returns the number of bytes used for each sample (1 to 4) in the original
// file. This is required information for the user of this module because the
// audio data is returned in the LOWER bytes of the long buffer and must be
// left-shifted 8, 16, or 24 bits if normalized longs are required.
int WavpackGetBytesPerSample (WavpackContext *wpc)
{
return wpc ? wpc->config.bytes_per_sample : 2;
}
// If the OPEN_2CH_MAX flag is specified when opening the file, this function
// will return the actual number of channels decoded from the file (which may
// or may not be less than the actual number of channels, but will always be
// 1 or 2). Normally, this will be the front left and right channels of a
// multichannel file.
int WavpackGetReducedChannels (WavpackContext *wpc)
{
if (wpc)
return wpc->reduced_channels ? wpc->reduced_channels : wpc->config.num_channels;
else
return 2;
}
// Free all memory allocated for raw WavPack blocks (for all allocated streams)
// and free all additonal streams. This does not free the default stream ([0])
// which is always kept around.
void free_streams (WavpackContext *wpc)
{
int si = wpc->num_streams;
while (si--) {
if (wpc->streams [si]->blockbuff) {
free (wpc->streams [si]->blockbuff);
wpc->streams [si]->blockbuff = NULL;
}
if (wpc->streams [si]->block2buff) {
free (wpc->streams [si]->block2buff);
wpc->streams [si]->block2buff = NULL;
}
if (wpc->streams [si]->sample_buffer) {
free (wpc->streams [si]->sample_buffer);
wpc->streams [si]->sample_buffer = NULL;
}
if (wpc->streams [si]->dc.shaping_data) {
free (wpc->streams [si]->dc.shaping_data);
wpc->streams [si]->dc.shaping_data = NULL;
}
if (wpc->streams [si]->dsd.probabilities) {
free (wpc->streams [si]->dsd.probabilities);
wpc->streams [si]->dsd.probabilities = NULL;
}
if (wpc->streams [si]->dsd.summed_probabilities) {
free (wpc->streams [si]->dsd.summed_probabilities);
wpc->streams [si]->dsd.summed_probabilities = NULL;
}
if (wpc->streams [si]->dsd.value_lookup) {
int i;
for (i = 0; i < wpc->streams [si]->dsd.history_bins; ++i)
if (wpc->streams [si]->dsd.value_lookup [i])
free (wpc->streams [si]->dsd.value_lookup [i]);
free (wpc->streams [si]->dsd.value_lookup);
wpc->streams [si]->dsd.value_lookup = NULL;
}
if (wpc->streams [si]->dsd.ptable) {
free (wpc->streams [si]->dsd.ptable);
wpc->streams [si]->dsd.ptable = NULL;
}
if (si) {
wpc->num_streams--;
free (wpc->streams [si]);
wpc->streams [si] = NULL;
}
}
wpc->current_stream = 0;
}
void WavpackFloatNormalize (int32_t *values, int32_t num_values, int delta_exp)
{
f32 *fvalues = (f32 *) values;
int exp;
if (!delta_exp)
return;
while (num_values--) {
if ((exp = get_exponent (*fvalues)) == 0 || exp + delta_exp <= 0)
*fvalues = 0;
else if (exp == 255 || (exp += delta_exp) >= 255) {
set_exponent (*fvalues, 255);
set_mantissa (*fvalues, 0);
}
else
set_exponent (*fvalues, exp);
fvalues++;
}
}
void WavpackLittleEndianToNative (void *data, char *format)
{
unsigned char *cp = (unsigned char *) data;
int64_t temp;
while (*format) {
switch (*format) {
case 'D':
temp = cp [0] + ((int64_t) cp [1] << 8) + ((int64_t) cp [2] << 16) + ((int64_t) cp [3] << 24) +
((int64_t) cp [4] << 32) + ((int64_t) cp [5] << 40) + ((int64_t) cp [6] << 48) + ((int64_t) cp [7] << 56);
* (int64_t *) cp = temp;
cp += 8;
break;
case 'L':
temp = cp [0] + ((int32_t) cp [1] << 8) + ((int32_t) cp [2] << 16) + ((int32_t) cp [3] << 24);
* (int32_t *) cp = (int32_t) temp;
cp += 4;
break;
case 'S':
temp = cp [0] + (cp [1] << 8);
* (int16_t *) cp = (int16_t) temp;
cp += 2;
break;
default:
if (isdigit (*format))
cp += *format - '0';
break;
}
format++;
}
}
void WavpackNativeToLittleEndian (void *data, char *format)
{
unsigned char *cp = (unsigned char *) data;
int64_t temp;
while (*format) {
switch (*format) {
case 'D':
temp = * (int64_t *) cp;
*cp++ = (unsigned char) temp;
*cp++ = (unsigned char) (temp >> 8);
*cp++ = (unsigned char) (temp >> 16);
*cp++ = (unsigned char) (temp >> 24);
*cp++ = (unsigned char) (temp >> 32);
*cp++ = (unsigned char) (temp >> 40);
*cp++ = (unsigned char) (temp >> 48);
*cp++ = (unsigned char) (temp >> 56);
break;
case 'L':
temp = * (int32_t *) cp;
*cp++ = (unsigned char) temp;
*cp++ = (unsigned char) (temp >> 8);
*cp++ = (unsigned char) (temp >> 16);
*cp++ = (unsigned char) (temp >> 24);
break;
case 'S':
temp = * (int16_t *) cp;
*cp++ = (unsigned char) temp;
*cp++ = (unsigned char) (temp >> 8);
break;
default:
if (isdigit (*format))
cp += *format - '0';
break;
}
format++;
}
}
void WavpackBigEndianToNative (void *data, char *format)
{
unsigned char *cp = (unsigned char *) data;
int64_t temp;
while (*format) {
switch (*format) {
case 'D':
temp = cp [7] + ((int64_t) cp [6] << 8) + ((int64_t) cp [5] << 16) + ((int64_t) cp [4] << 24) +
((int64_t) cp [3] << 32) + ((int64_t) cp [2] << 40) + ((int64_t) cp [1] << 48) + ((int64_t) cp [0] << 56);
* (int64_t *) cp = temp;
cp += 8;
break;
case 'L':
temp = cp [3] + ((int32_t) cp [2] << 8) + ((int32_t) cp [1] << 16) + ((int32_t) cp [0] << 24);
* (int32_t *) cp = (int32_t) temp;
cp += 4;
break;
case 'S':
temp = cp [1] + (cp [0] << 8);
* (int16_t *) cp = (int16_t) temp;
cp += 2;
break;
default:
if (isdigit (*format))
cp += *format - '0';
break;
}
format++;
}
}
void WavpackNativeToBigEndian (void *data, char *format)
{
unsigned char *cp = (unsigned char *) data;
int64_t temp;
while (*format) {
switch (*format) {
case 'D':
temp = * (int64_t *) cp;
*cp++ = (unsigned char) (temp >> 56);
*cp++ = (unsigned char) (temp >> 48);
*cp++ = (unsigned char) (temp >> 40);
*cp++ = (unsigned char) (temp >> 32);
*cp++ = (unsigned char) (temp >> 24);
*cp++ = (unsigned char) (temp >> 16);
*cp++ = (unsigned char) (temp >> 8);
*cp++ = (unsigned char) temp;
break;
case 'L':
temp = * (int32_t *) cp;
*cp++ = (unsigned char) (temp >> 24);
*cp++ = (unsigned char) (temp >> 16);
*cp++ = (unsigned char) (temp >> 8);
*cp++ = (unsigned char) temp;
break;
case 'S':
temp = * (int16_t *) cp;
*cp++ = (unsigned char) (temp >> 8);
*cp++ = (unsigned char) temp;
break;
default:
if (isdigit (*format))
cp += *format - '0';
break;
}
format++;
}
}
uint32_t WavpackGetLibraryVersion (void)
{
return (LIBWAVPACK_MAJOR<<16)
|(LIBWAVPACK_MINOR<<8)
|(LIBWAVPACK_MICRO<<0);
}
const char *WavpackGetLibraryVersionString (void)
{
return LIBWAVPACK_VERSION_STRING;
}