ecdh
parent
11e20c5a6a
commit
cca8f4640e
|
@ -355,7 +355,39 @@
|
||||||
<li>
|
<li>
|
||||||
Alice and Bob exchange <code>A</code> and <code>B</code>
|
Alice and Bob exchange <code>A</code> and <code>B</code>
|
||||||
<ul>
|
<ul>
|
||||||
<li>Same secret <code>A^b mod p == B^a mod p</code></li>
|
<li>
|
||||||
|
Same secret <code>A^b mod p == B^a mod p == g^(ab) mod p</code>
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
<p>Diffie-Hellman is based on group theory.</p>
|
||||||
|
<div class="markdown-heading">
|
||||||
|
<h2 class="heading-element">Elliptic Curve Diffie-Hellman (ECDH)</h2>
|
||||||
|
<a
|
||||||
|
id="user-content-elliptic-curve-diffie-hellman-ecdh"
|
||||||
|
class="anchor"
|
||||||
|
aria-label="Permalink: Elliptic Curve Diffie-Hellman (ECDH)"
|
||||||
|
href="#elliptic-curve-diffie-hellman-ecdh"
|
||||||
|
><span aria-hidden="true" class="octicon octicon-link"></span
|
||||||
|
></a>
|
||||||
|
</div>
|
||||||
|
<p>Instead of prime number, use elliptic curve.</p>
|
||||||
|
<ul>
|
||||||
|
<li>
|
||||||
|
Alice and Bob agree on elliptic curve <code>E</code> and generator
|
||||||
|
<code>G</code>.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
Alice generate secret <code>a</code> and public <code>A = [a]G</code>.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
Bob generate secret <code>b</code> and public <code>B = [b]G</code>.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
Alice and Bob exchange <code>A</code> and <code>B</code>
|
||||||
|
<ul>
|
||||||
|
<li>Same secret <code>[a]B == [b]A == [ab]G</code></li>
|
||||||
</ul>
|
</ul>
|
||||||
</li>
|
</li>
|
||||||
</ul>
|
</ul>
|
||||||
|
|
|
@ -188,4 +188,16 @@ public_key then it's over.
|
||||||
- Alice generate secret `a` and public `A = g^a mod p`.
|
- Alice generate secret `a` and public `A = g^a mod p`.
|
||||||
- Bob generate secret `b` and public `B = g^b mod p`.
|
- Bob generate secret `b` and public `B = g^b mod p`.
|
||||||
- Alice and Bob exchange `A` and `B`
|
- Alice and Bob exchange `A` and `B`
|
||||||
- Same secret `A^b mod p == B^a mod p`
|
- Same secret `A^b mod p == B^a mod p == g^(ab) mod p`
|
||||||
|
|
||||||
|
Diffie-Hellman is based on group theory.
|
||||||
|
|
||||||
|
## Elliptic Curve Diffie-Hellman (ECDH)
|
||||||
|
|
||||||
|
Instead of prime number, use elliptic curve.
|
||||||
|
|
||||||
|
- Alice and Bob agree on elliptic curve `E` and generator `G`.
|
||||||
|
- Alice generate secret `a` and public `A = [a]G`.
|
||||||
|
- Bob generate secret `b` and public `B = [b]G`.
|
||||||
|
- Alice and Bob exchange `A` and `B`
|
||||||
|
- Same secret `[a]B == [b]A == [ab]G`
|
||||||
|
|
Loading…
Reference in New Issue