til/Brain/tdop.md

224 lines
5.7 KiB
Markdown
Raw Normal View History

2020-03-25 21:32:58 +00:00
# Top Down Operator Precedence
Read [Top Down Operator Precedence](https://tdop.github.io/).
Read [Top down operator precedence parsing in Go](http://www.cristiandima.com/top-down-operator-precedence-parsing-in-go/).
Main flow:
```txt
Scanner -> Parser
```
## Scanner
Input: string
Output: series of tokens
Token is type of text.
Example input is `1 + 2`: `1`, `2` is token `int`, `+` is token `plus`.
## Parser
From tokens we scanned, we parsed them to [AST tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree).
### Expression
Each node of AST tree is called expression.
We implement expression like this:
```go
type Expression struct {
Token Token
Value interface{}
Children []Expression
}
```
Each expression has `Token`. `Value` and `Children` is optional.
Example: expression `int 3` has `Token int`, `Value 3` but doesn't have `Children`,
expression `and A B` has `Token and`, `Children A B` but doesn't have `Value`.
With input `A + B * C`, we parse to expression like this:
```txt
+
/ \
A *
/ \
B C
```
### Token precedence
Each token has [precedence](https://en.wikipedia.org/wiki/Order_of_operations#Programming_languages).
Precedence decides order of operator.
Example `A + B * C`, `*` has higher precedence than `+` so `A + (B * C)`.
### Token program
Each token has programs, program to decide what to do if we meet that token when we parse.
Token program can be 2 types: `nud` or `led`.
| short | long | explain |
| ----- | --------------- | ---------------------------------------------------------------- |
| `nud` | null denotation | code denoted by a value (int, string, ...) token or prefix token |
| `led` | left denotation | code denoted by an infix token |
Example prefix token is `(`, `not`, `-` (negative sign).
Example infix token is `and`, `or`, `==`.
### Pratt algorithm
To do what we want, we implement Pratt algorithm.
Core algorithm looks like this:
```go
func Parse(precedence int) Expression {
token := Scan()
result := nud(token)
for {
peekToken := Peek()
if precedence >= peekToken.Precedence() {
break
}
token := Scan()
result = led(token, result)
}
return result
}
func nud(token Token) Expression {
return Expression{
Token: token,
// deal with value and children
}
}
func led(token Token, expr Expression) Expression {
rightExpr := Parse(token.Precedence())
// do something special
return Expression {
Token: token,
// deal with value
Children: []Expression{
expr,
rightExpr,
}
}
}
```
| mystery | explain |
| -------------------------------------- | ------------------------------------------------------------------------- |
| `precedence argument` | precedence of previous token |
| `Scan()` | return next token and ahh it gone |
| `Peek()` | return next token but it's still there |
| `precedence >= peekToken.Precedence()` | previous token is already powerful than next token, stop |
| `nud(token)` | return expression, this token must be value or prefix |
| `led(token, result)` | return expression with result as right argument, this token must be infix |
Must remember is `nud()` and `led` in example are for general.
Each token should define how `nud()` and `led()` do, if not define let user handle error.
To parse, call `Parse(0)`.
This algorithm is hard I know. But it will be easier if we read through example
### Example
Assume `+`, `-` precedence is 1, `*` precedence is 2.
Input: `A + B * C - D`
Function calls happen as follows:
```txt
Parse(precedence = 0) (1)
nud(A) result in Expression(A)
0 < peek.Precedence (peek is +, precedence is 1), enter loop
led(+, Expression(A)) result in Expression(+)
save Expression(A) as first child
call Parse(precedence = 1) (2) and save result as second child
Tree:
+
/ \
A ?
Parse(precedence = 1) (2)
nud(B) result in Expression(B)
1 < peek.Precedence (peek is *, precedence is 2), enter loop
led(*, Expression(B)) result in Expression(*)
save Expression(B) as first child
call Parse(precedence = 2) (3) and save result as second child
Tree:
*
/ \
B ?
Parse(precedence = 2) (3)
nud(C) result in Expression(C)
2 > peek.Precedence(peek is -, precedence is 1), stop loop
return Expression(C)
Tree:
C
Back to Parse(precedence = 1) (2)
Expression(*) has Expression(C) as second child
continue loop
1 = peek.Precedence (peek is -, precedence is 1), stop loop
return Expression(*) with Expression(B), Expression(C) as children
Tree:
*
/ \
B C
Back to Parse(precedence = 0) (1)
Expression(+) has Expression(*) as second child
continue loop
0 < peek.Precedence (peek is +, precedence is 1)
led(-, Expression(+)) result in Expression(-)
save Expression(+) as first child
call Parse(precedence = 1) (4) and save result as second child
Tree:
-
/ \
+ ?
/ *
A / \
B C
Parse(precedence = 1) (4)
nud(D) result in Expression(D)
1 < peek.Precedence(peek is EOF, precedence is 0), stop loop
return Expression(D)
Tree:
D
Back to Parse(precedence = 0) (1)
Expression(-) has Expression(D) as second child
continue loop
0 = peek.Precedence(peek is EOF, precedence is 0), stop loop
return Expression(-) with Expression(+), Expression(D) as children
Tree:
-
/ \
+ D
/ *
A / \
B C
```