1094 lines
48 KiB
Markdown
1094 lines
48 KiB
Markdown
---
|
|
title: Frequently Asked Questions
|
|
x-toc-enable: true
|
|
...
|
|
|
|
NOTE: Libreboot standardises on [flashprog](https://flashprog.org/wiki/Flashprog)
|
|
now, as of 27 January 2024, which is a fork of flashrom.
|
|
|
|
AKA Frequently Questioned Answers
|
|
|
|
Disable security before flashing
|
|
================================
|
|
|
|
Before internal flashing, you must first disable `/dev/mem` protections. Make
|
|
sure to re-enable them after you're finished.
|
|
|
|
See: [Disabling /dev/mem protection](docs/install/devmem.md)
|
|
|
|
Buy Libreboot pre-installed
|
|
==========
|
|
|
|
If you want professional installation, Minifree Ltd sells [Libreboot
|
|
pre-installed](https://minifree.org/) on select hardware, and it also provides
|
|
a [Libreboot preinstall service](https://minifree.org/product/installation-service/)
|
|
if you want to send your machine in to have Libreboot installed for you.
|
|
|
|
Leah Rowe, the founder and lead developer of Libreboot, also owns and
|
|
operates Minifree Ltd; sales provide funding for the Libreboot project.
|
|
|
|
Important issues
|
|
================
|
|
|
|
How to compile libreboot from source
|
|
------------------------------------
|
|
|
|
Refer to the [lbmk build instructions](docs/build/).
|
|
|
|
How does the build system work?
|
|
-------------------------------
|
|
|
|
Refer to the [lbmk maintenance manual](docs/maintain/).
|
|
|
|
Do not use CH341A!
|
|
------------------
|
|
|
|
This SPI flasher will damage your chip, and the mainboard that it is connected
|
|
to.
|
|
|
|
Read the notes about CH341A on [docs/install/spi.md](docs/install/spi.md) to
|
|
learn more.
|
|
|
|
How Can I Help
|
|
--------------
|
|
|
|
You do not need to be a skilled developer in order to help the project
|
|
substantially.
|
|
If you have a board supported by Coreboot, consider [porting](/docs/maintain/porting.md)
|
|
it to Libreboot.
|
|
|
|
If you have a board supported in Libreboot then please consider becoming a
|
|
tester.
|
|
Testing involves minimal effort and really helps out the project.
|
|
See the [board maintainers documentation](/docs/maintain/testing.md)
|
|
if you are interested in testing roms before they are released.
|
|
|
|
Uneven backlight on GM45 ThinkPads
|
|
----------------------------------
|
|
|
|
We don't know how to detect the correct PWM value to use in
|
|
coreboot, so we just use the default one in coreboot which has
|
|
this issue on some CCFL panels, but not LED panels.
|
|
|
|
You can work around this in your distribution, by following the notes at
|
|
[docs: backlight control](../docs/misc/#finetune-backlight-control-on-intel-gpus).
|
|
|
|
GM45 thinkpad ethernet port doesn't autoconnect
|
|
-----------------------------------------------
|
|
|
|
This was observed on some systems using network-manager. This happens
|
|
both on the original BIOS and in libreboot. It's a quirk in the
|
|
hardware. On debian systems, a workaround is to restart the networking
|
|
service when you connect the ethernet cable:
|
|
|
|
sudo service network-manager restart
|
|
|
|
On systemd-based distros, you might try:
|
|
|
|
sudo systemctl restart network-manager
|
|
|
|
(the service name might be different for you, depending on your
|
|
configuration)
|
|
|
|
PIKE2008 module hangs KGPE-D16 / KCMA-D8
|
|
-----------------------------------------
|
|
|
|
Loading the option ROM from the PIKE2008 module on either ASUS KCMA-D8
|
|
or KGPE-D16 causes the system to hang at boot. It's possible to use
|
|
this in the payload (if you use a linux kernel payload, like linuxboot),
|
|
or to boot (with SeaGRUB and/or SeaBIOS) from regular SATA and then use
|
|
it in Linux. The Linux kernel is capable of using the PIKE2008
|
|
module without loading the option ROM.
|
|
|
|
How to save kernel panic logs on thinkpad laptops?
|
|
--------------------------------------------------
|
|
|
|
The easiest method of doing so is by using the kernel's netconsole
|
|
and reproducing the panic. Netconsole requires two machines, the one that is
|
|
panicky (source) and the one that will receive crash logs (target). The
|
|
source has to be connected with an ethernet cable and the target has to be
|
|
reachable at the time of the panic. To set this system up, execute the
|
|
following commands as root on the source (`source#`) and normal user on
|
|
the target (`target$`):
|
|
|
|
1. Start a listener server on the target machine (netcat works well):
|
|
|
|
`target$ nc -u -l -p 6666`
|
|
|
|
2. Mount configfs (only once per boot, you can check if it is already mounted
|
|
with `mount | grep /sys/kernel/config`. This will return no output
|
|
if it is not).
|
|
|
|
`source# modprobe configfs`
|
|
|
|
`source# mkdir -p /sys/kernel/config`
|
|
|
|
`source# mount none -t configfs /sys/kernel/config`
|
|
|
|
3. find source's ethernet interface name, it should be of the form `enp*` or
|
|
`eth*`, see `ip address` or `ifconfig` output.
|
|
|
|
`source# iface="enp0s29f8u1"` change this
|
|
|
|
Fill the target machine's IPv4 address here:
|
|
|
|
`source# tgtip="192.168.1.2"` change this
|
|
|
|
|
|
4. Create netconsole logging target on the source machine:
|
|
|
|
`source# modprobe netconsole`
|
|
|
|
`source# cd /sys/kernel/config/netconsole`
|
|
|
|
`source# mkdir target1; cd target1`
|
|
|
|
`source# srcip=$(ip -4 addr show dev "$iface" | grep -Eo '[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+')`
|
|
|
|
`source# echo "$srcip" > local_ip`
|
|
|
|
`source# echo "$tgtip" > remote_ip`
|
|
|
|
`source# echo "$iface" > dev_name`
|
|
|
|
`source# arping -I "$iface" "$tgtip" -f | grep -o '..:..:..:..:..:..' > remote_mac`
|
|
|
|
`source# echo 1 > enabled`
|
|
|
|
5. Change console loglevel to debugging:
|
|
|
|
`source# dmesg -n debug`
|
|
|
|
6. Test if the logging works by e.g. inserting or removing an USB
|
|
device on the source. There should be a few lines appearing in the
|
|
terminal, in which you started netcat (nc), on the target host.
|
|
|
|
7. Try to reproduce the kernel panic.
|
|
|
|
Hardware compatibility
|
|
======================
|
|
|
|
What systems are compatible with libreboot?
|
|
-----------------------------------------------------------------------------------
|
|
|
|
Any system can easily be added, so *compatibility* merely refers to whatever
|
|
boards are integrated in the `lbmk` build system, which libreboot uses.
|
|
|
|
The [installation page](docs/install/) lists compatible machines.
|
|
|
|
Freedom pitfalls with modern Intel hardware {#intel}
|
|
----------------------------------------------------
|
|
|
|
Coreboot is nominally Free Software, but requires certain vendor code on some x86
|
|
targets that it supports, on both Intel and AMD.
|
|
|
|
### Intel Management Engine (ME) {#intelme}
|
|
|
|
NOTE: The information below is slightly out of date. Nowadays, Intel ME does
|
|
not run on an ARC coprocessor, but instead runs on a modified Intel 486 based
|
|
architecture, with the ME firmware written for x86 based on the Minix operating
|
|
system. However, the overall design philosophy and operation is mostly the
|
|
same.
|
|
|
|
On *most* current Intel platforms that have Intel ME, it is now possible
|
|
to disable Intel ME after BringUp. See:
|
|
|
|
<https://github.com/corna/me_cleaner>\
|
|
|
|
On all GM45+ICH9M laptops that have an Intel ME in it (additionally, this means
|
|
X4X+ICH10 desktops), the ME firmware is not needed in the boot flash. Either a
|
|
modified descriptor is used, which disables the ME and removes the region for
|
|
it in the boot flash, or a descriptorless setup is used. However, all modern
|
|
Intel platforms otherwise require an Intel ME image to be present in the main
|
|
boot flash.
|
|
|
|
Now onto the main topic:
|
|
|
|
Introduced in June 2006 in Intel's 965 Express Chipset Family of
|
|
(Graphics and) Memory Controller Hubs, or (G)MCHs, and the ICH8 I/O
|
|
Controller Family, the Intel Management Engine (ME) is a separate
|
|
computing environment physically located in the (G)MCH chip. In Q3 2009,
|
|
the first generation of Intel Core i3/i5/i7 (Nehalem) CPUs and the 5
|
|
Series Chipset family of Platform Controller Hubs, or PCHs, brought a
|
|
more tightly integrated ME (now at version 6.0) inside the PCH chip,
|
|
which itself replaced the ICH. Thus, the ME is ***present on all Intel
|
|
desktop, mobile (laptop), and server systems since mid 2006***.
|
|
|
|
The ME consists of an ARC processor core (replaced with other processor
|
|
cores in later generations of the ME), code and data caches, a timer,
|
|
and a secure internal bus to which additional devices are connected,
|
|
including a cryptography engine, internal ROM and RAM, memory
|
|
controllers, and a ***direct memory access (DMA) engine*** to access the
|
|
host operating system's memory as well as to reserve a region of
|
|
protected external memory to supplement the ME's limited internal RAM.
|
|
The ME also has ***network access*** with its own MAC address through an
|
|
Intel Gigabit Ethernet Controller. Its boot program, stored on the
|
|
internal ROM, loads a firmware "manifest" from the PC's SPI flash
|
|
chip. This manifest is ***signed with a strong cryptographic key***,
|
|
which differs between versions of the ME firmware. If the manifest
|
|
isn't signed by a specific Intel key, the boot ROM won't load and
|
|
execute the firmware and the ME processor core will be halted.
|
|
|
|
The ME firmware is compressed and consists of modules that are listed in
|
|
the manifest along with secure cryptographic hashes of their contents.
|
|
One module is the operating system kernel, which is based on a
|
|
***proprietary real-time operating system (RTOS) kernel*** called
|
|
"ThreadX". The developer, Express Logic, sells licenses and source
|
|
code for ThreadX. Customers such as Intel are forbidden from disclosing
|
|
or sublicensing the ThreadX source code. Another module is the Dynamic
|
|
Application Loader (DAL), which consists of a ***Java virtual machine***
|
|
and set of preinstalled Java classes for cryptography, secure storage,
|
|
etc. The DAL module can load and execute additional ME modules from the
|
|
PC's HDD or SSD. The ME firmware also includes a number of native
|
|
application modules within its flash memory space, including Intel
|
|
Active Management Technology (AMT), an implementation of a Trusted
|
|
Platform Module (TPM), Intel Boot Guard, and audio and video DRM
|
|
systems.
|
|
|
|
The Active Management Technology (AMT) application, part of the Intel
|
|
"vPro" brand, is a Web server and application code that enables remote
|
|
users to power on, power off, view information about, and otherwise
|
|
manage the PC. It can be ***used remotely even while the PC is powered
|
|
off*** (via Wake-on-Lan). Traffic is encrypted using SSL/TLS libraries,
|
|
but recall that all of the major SSL/TLS implementations have had highly
|
|
publicized vulnerabilities. The AMT application itself has ***[known
|
|
vulnerabilities](https://en.wikipedia.org/wiki/Intel_Active_Management_Technology#Known_vulnerabilities_and_exploits)***,
|
|
which have been exploited to develop rootkits and keyloggers and
|
|
covertly gain encrypted access to the management features of a PC.
|
|
Remember that the ME has full access to the PC's RAM. This means that
|
|
an attacker exploiting any of these vulnerabilities may gain access to
|
|
everything on the PC as it runs: all open files, all running
|
|
applications, all keys pressed, and more.
|
|
|
|
[Intel Boot Guard](https://mjg59.dreamwidth.org/33981.md) is an ME
|
|
application introduced in Q2 2013 with ME firmware version 9.0 on 4th
|
|
Generation Intel Core i3/i5/i7 (Haswell) CPUs. It allows a PC OEM to
|
|
generate an asymmetric cryptographic keypair, install the public key in
|
|
the CPU, and prevent the CPU from executing boot firmware that isn't
|
|
signed with their private key. This means that ***coreboot and libreboot
|
|
are impossible to port*** to such PCs, without the OEM's private
|
|
signing key. Note that systems assembled from separately purchased
|
|
mainboard and CPU parts are unaffected, since the vendor of the
|
|
mainboard (on which the boot firmware is stored) can't possibly affect
|
|
the public key stored on the CPU.
|
|
|
|
ME firmware versions 4.0 and later (Intel 4 Series and later chipsets)
|
|
include an ME application for ***audio and video
|
|
[DRM](https://defectivebydesign.org/what_is_drm_digital_restrictions_management)***
|
|
called "Protected Audio Video Path" (PAVP). The ME receives from the
|
|
host operating system an encrypted media stream and encrypted key,
|
|
decrypts the key, and sends the encrypted media decrypted key to the
|
|
GPU, which then decrypts the media. PAVP is also used by another ME
|
|
application to draw an authentication PIN pad directly onto the screen.
|
|
In this usage, the PAVP application directly controls the graphics that
|
|
appear on the PC's screen in a way that the host OS cannot detect. ME
|
|
firmware version 7.0 on PCHs with 2nd Generation Intel Core i3/i5/i7
|
|
(Sandy Bridge) CPUs replaces PAVP with a similar DRM application called
|
|
"Intel Insider". Like the AMT application, these DRM applications,
|
|
which in themselves are defective by design, demonstrate the omnipotent
|
|
capabilities of the ME: this hardware and its proprietary firmware can
|
|
access and control everything that is in RAM and even ***everything that
|
|
is shown on the screen***.
|
|
|
|
The Intel Management Engine with its proprietary firmware has complete
|
|
access to and control over the PC: it can power on or shut down the PC,
|
|
read all open files, examine all running applications, track all keys
|
|
pressed and mouse movements, and even capture or display images on the
|
|
screen. And it has a network interface that is demonstrably insecure,
|
|
which can allow an attacker on the network to inject rootkits that
|
|
completely compromise the PC and can report to the attacker all
|
|
activities performed on the PC. It is a threat to freedom, security, and
|
|
privacy that can't be ignored.
|
|
|
|
Before version 6.0 (that is, on systems from 2008/2009 and earlier), the
|
|
ME can be disabled by setting a couple of values in the SPI flash
|
|
memory. The ME firmware can then be removed entirely from the flash
|
|
memory space. The libreboot project [does this](docs/install/ich9utils.md) on
|
|
the Intel 4 Series systems that it supports, such as the [ThinkPad
|
|
X200](../docs/install/x200.md) and [ThinkPad
|
|
T400](../docs/install/t400.md). ME firmware versions 6.0 and
|
|
later, which are found on all systems with an Intel Core i3/i5/i7 CPU
|
|
and a PCH, include "ME Ignition" firmware that performs some hardware
|
|
initialization and power management. If the ME's boot ROM does not find
|
|
in the SPI flash memory an ME firmware manifest with a valid Intel
|
|
signature, the whole PC will shut down after 30 minutes.
|
|
|
|
Due to the signature verification, developing free replacement firmware
|
|
for the ME is basically impossible. The only entity capable of replacing
|
|
the ME firmware is Intel. As previously stated, the ME firmware includes
|
|
proprietary code licensed from third parties, so Intel couldn't release
|
|
the source code even if they wanted to. And even if they developed
|
|
completely new ME firmware without third-party proprietary code and
|
|
released its source code, the ME's boot ROM would reject any modified
|
|
firmware that isn't signed by Intel. Thus, the ME firmware is both
|
|
hopelessly proprietary and "tivoized".
|
|
|
|
**In summary, the Intel Management Engine and its applications are a
|
|
backdoor with total access to and control over the rest of the PC. The
|
|
ME is a threat to freedom, security, and privacy, and the libreboot
|
|
project strongly recommends avoiding it entirely. Since recent versions
|
|
of it can't be removed, this means avoiding all recent generations of
|
|
Intel hardware.**
|
|
|
|
The *above* paragraph is only talking about setups where the *full* Intel ME
|
|
firmware is used, containing networking code and especially *Active Management
|
|
Technology* (AMT).
|
|
|
|
Use of the `me_cleaner` utility is believed to minimize any security risk when
|
|
using these Intel platforms, and coreboot *does* contain fully free code for
|
|
sandybridge/ivybridge platforms.
|
|
|
|
More information about the Management Engine can be found on various Web
|
|
sites, including [me.bios.io](http://me.bios.io/Main_Page),
|
|
[unhuffme](http://io.netgarage.org/me/), [coreboot
|
|
wiki](http://www.coreboot.org/Intel_Management_Engine), and
|
|
[Wikipedia](https://en.wikipedia.org/wiki/Intel_Active_Management_Technology).
|
|
The book ***[Platform Embedded Security Technology
|
|
Revealed](https://www.apress.com/9781430265719)*** describes in great
|
|
detail the ME's hardware architecture and firmware application modules.
|
|
|
|
If you're stuck with the ME (non-libreboot system), you might find this
|
|
interesting:
|
|
<https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html>
|
|
|
|
### Firmware Support Package (FSP) {#fsp}
|
|
|
|
On all recent Intel systems, coreboot support has revolved around
|
|
integrating a vendor file (for each system) called the *FSP* (firmware support
|
|
package), which handles all of the hardware initialization, including
|
|
memory and CPU initialization. Reverse engineering and replacing this
|
|
file is almost impossible, due to how complex it is. Even for the most
|
|
skilled developer, it would take years to replace. Intel distributes
|
|
this file to firmware developers, for free redistribution.
|
|
|
|
Since the FSP is responsible for the early hardware initialization, that
|
|
means it also handles SMM (System Management Mode). This is a special
|
|
mode that operates below the operating system level.
|
|
|
|
### CPU microcode updates {#microcode}
|
|
|
|
The microcode configures logic gates in your CPU, to implement an instruction
|
|
set architecture. Your CPU will already contain them, but it also supplies a
|
|
way to update the microcode at boot time, fixing bugs and greatly enhancing
|
|
the general reliability of your system.
|
|
|
|
Microcode is already discussed in great detail, on the [binary blobs
|
|
policy](news/policy.md).
|
|
|
|
This interesting video talks about how a group of people reverse engineered
|
|
the microcode on AMD processors:
|
|
|
|
<https://yewtu.be/watch?v=W3FbTMqYi4U>
|
|
|
|
Here is another video:
|
|
|
|
<https://yewtu.be/watch?v=I6dQfnb3y0I>
|
|
|
|
The git repository for that project is here:
|
|
|
|
<https://github.com/RUB-SysSec/Microcode>
|
|
|
|
Both the video and the repository give some further insight about CPU
|
|
microcode. The way it works on AMD will be very similar to Intel.
|
|
|
|
Freedom pitfalls to consider on AMD hardware {#amd}
|
|
----------------------------------------------------------------------------
|
|
|
|
NOTE: Nowadays there's openSIL <https://github.com/openSIL/openSIL> - it's
|
|
AMD's attempt to provide some source code again, that projects like coreboot
|
|
can use, but AMD is still problematic; the PSP for example (see below) cannot
|
|
be "neutered" (nothing like `me_cleaner`, or *psp\_cleaner*) exists yet.
|
|
|
|
AMD has more or less the same problem as Intel, when it comes to software
|
|
freedom.
|
|
|
|
### AMD Platform Security Processor (PSP)
|
|
|
|
This is basically AMD's own version of the [Intel Management
|
|
Engine](#intelme). It has all of the same basic security and freedom
|
|
issues, although the implementation is wildly different.
|
|
|
|
The Platform Security Processor (PSP) is built in on the AMD CPUs whose
|
|
[architecture](https://en.wikipedia.org/wiki/List_of_AMD_CPU_microarchitectures) is Late Family 16h (Puma), Zen 17h or later (and also on
|
|
the AMD GPUs which are GCN 5th gen (Vega) or later). On the CPUs, a PSP
|
|
controls the main x86 core startup. PSP firmware is cryptographically
|
|
signed with a strong key similar to the Intel ME. If the PSP firmware
|
|
is not present, or if the AMD signing key is not present, the x86 cores
|
|
will not be released from reset, rendering the system inoperable.
|
|
|
|
The PSP is an ARM core with TrustZone technology, built onto the main
|
|
CPU die. As such, it has the ability to hide its own program code,
|
|
scratch RAM, and any data it may have taken and stored from the
|
|
lesser-privileged x86 system RAM (kernel encryption keys, login data,
|
|
browsing history, keystrokes, who knows!). To make matters worse, the
|
|
PSP theoretically has access to the entire system memory space (AMD
|
|
either will not or cannot deny this, and it would seem to be required to
|
|
allow the DRM "features" to work as intended), which means that it has
|
|
at minimum MMIO-based access to the network controllers and any other
|
|
PCI/PCIe peripherals installed on the system.
|
|
|
|
In theory any malicious entity with access to the AMD signing key would
|
|
be able to install persistent malware that could not be eradicated
|
|
without an external flasher and a known good PSP image. Furthermore,
|
|
multiple security vulnerabilities have been demonstrated in AMD firmware
|
|
in the past, and there is every reason to assume one or more zero day
|
|
vulnerabilities are lurking in the PSP firmware. Given the extreme
|
|
privilege level (ring -2 or ring -3) of the PSP, said vulnerabilities
|
|
would have the ability to remotely monitor and control any PSP enabled
|
|
machine completely outside of the user's knowledge.
|
|
|
|
Much like with the Intel Boot Guard (an application of the Intel
|
|
Management Engine), AMD's PSP can also act as a tyrant by checking
|
|
signatures on any boot firmware that you flash, making replacement boot
|
|
firmware (e.g. libreboot, coreboot) impossible on some boards. Early
|
|
anecdotal reports indicate that AMD's boot guard counterpart will be
|
|
used on most OEM hardware, disabled only on so-called "enthusiast"
|
|
CPUs.
|
|
|
|
### AMD IMC firmware
|
|
|
|
Read <https://www.coreboot.org/AMD_IMC>.
|
|
|
|
NOTE: This section is oudated, and it is in need of cleanup.
|
|
|
|
### AMD SMU firmware
|
|
|
|
NOTE: This section may be outdated, and it is in need of cleanup.
|
|
|
|
Handles some power management for PCIe devices (without this, your
|
|
laptop will not work properly) and several other power management
|
|
related features.
|
|
|
|
The firmware is signed, although on older AMD hardware it is a symmetric
|
|
key, which means that with access to the key (if leaked) you could sign
|
|
your own modified version and run it. Rudolf Marek (coreboot hacker)
|
|
found out how to extract this key [in this video
|
|
demonstration](https://media.ccc.de/v/31c3_-_6103_-_en_-_saal_2_-_201412272145_-_amd_x86_smu_firmware_analysis_-_rudolf_marek),
|
|
and based on this work, Damien Zammit (another coreboot hacker)
|
|
[partially replaced it](https://github.com/zamaudio/smutool/) with free
|
|
firmware, but on the relevant system (ASUS F2A85-M) there were still
|
|
other such files present (Video BIOS, and others).
|
|
|
|
### AMD AGESA firmware
|
|
|
|
NOTE: More needs to be written about this, to reflect the current reality.
|
|
The situation with AMD has evolved in recent years. The information on this FAQ
|
|
page is a few years out of date.
|
|
|
|
This is responsible for virtually all core hardware initialization on
|
|
modern AMD systems. In 2011, AMD started cooperating with the coreboot
|
|
project, releasing this as source code under a free license. In 2014,
|
|
they stopped releasing source code and started releasing AGESA as vendor
|
|
blobs instead. This makes AGESA now equivalent to [Intel FSP](#fsp).
|
|
|
|
### AMD CPU microcode updates
|
|
|
|
Read the Intel section
|
|
practically the same, though it was found with much later hardware in
|
|
AMD that you could run without microcode updates. It's unknown whether
|
|
the updates are needed on all AMD boards (depends on CPU).
|
|
|
|
The libreboot project does not consider microcode updates a problem, and it
|
|
enables them by default on all supported hardware.
|
|
|
|
Hi, I have <insert random system here>, is it supported?
|
|
--------------------------------------------------------------------------------------------------------
|
|
|
|
If it's supported by coreboot, you can add it immediately.
|
|
Read the [porting guide](/docs/maintain/porting.html) for how to port for a new board.
|
|
If you are able to generate a working rom for your system, please read
|
|
[lbmk maintenance manual](docs/maintain/) for how to add it to libreboot.
|
|
|
|
If coreboot lacks support for your hardware, you must add support for it.
|
|
Please consult the coreboot project for guidance.
|
|
|
|
General questions
|
|
=================
|
|
|
|
How do I install libreboot?
|
|
-------------------------------------------------------
|
|
|
|
See [installation guide](docs/install/)
|
|
|
|
How do I program an SPI flash chip?
|
|
---------------------------------------------------------------------------------
|
|
|
|
Refer to:\
|
|
[Externally rewrite 25xx NOR flash via SPI protocol](docs/install/spi.md)
|
|
|
|
It's possible to use a 16-pin SOIC test clip on an 8-pin SOIC chip, if you
|
|
align the pins properly. The connection is generally more sturdy.
|
|
|
|
How do I write-protect the flash chip?
|
|
----------------------------------------------------------------------------
|
|
|
|
By default, there is no write-protection on a libreboot system. This is
|
|
for usability reasons, because most people do not have easy access to an
|
|
external programmer for re-flashing their firmware, or they find it
|
|
inconvenient to use an external programmer.
|
|
|
|
On some systems, it is possible to write-protect the firmware, such that
|
|
it is rendered read-only at the OS level (external flashing is still
|
|
possible, using dedicated hardware). For example, on current GM45
|
|
laptops (e.g. ThinkPad X200, T400), you can write-protect (see
|
|
[ICH9 gen utility](docs/install/ich9utils.md#ich9gen)).
|
|
|
|
It's possible to write-protect on all libreboot systems, but the instructions
|
|
need to be written. The documentation is in the main git repository, so you are
|
|
welcome to submit patches adding these instructions.
|
|
|
|
TODO: Document PRx based flash protection on Intel platforms, and investigate
|
|
other methods on AMD systems.
|
|
|
|
How do I change the BIOS settings?
|
|
------------------------------------------------------------------------
|
|
|
|
Most libreboot setups actually use the [GRUB
|
|
payload](http://www.coreboot.org/GRUB2). More information about payloads
|
|
can be found at
|
|
[coreboot.org/Payloads](http://www.coreboot.org/Payloads). SeaBIOS is also
|
|
available. The *CMOS* config is hardcoded in libreboot.
|
|
|
|
The libreboot project inherits the modular payload concept from coreboot, which
|
|
means that pre-OS bare-metal *BIOS setup* programs are not very
|
|
practical. Coreboot (and libreboot) does include a utility called
|
|
*nvramtool*, which can be used to change some settings. You can find
|
|
nvramtool under *coreboot/util/nvramtool/*, in the libreboot source
|
|
archives.
|
|
|
|
The *-a* option in nvramtool will list the available options, and *-w*
|
|
can be used to change them. Consult the nvramtool documentation on the
|
|
coreboot wiki for more information.
|
|
|
|
In practise, you don't need to change any of those settings, in most
|
|
cases.
|
|
|
|
Default libreboot setups lock the CMOS table, to ensure consistent functionality
|
|
for all users. You can use:
|
|
|
|
nvramtool -C yourrom.rom -w somesetting=somevalue
|
|
|
|
To get a full list of available options, do this:
|
|
|
|
nvramtool -C yourrom.rom -a
|
|
|
|
This will change the default inside that ROM image, and then you can
|
|
re-flash it.
|
|
|
|
How do I pad a ROM before flashing?
|
|
--------------------------------------
|
|
|
|
It is advisable to simply use a larger ROM image. This section was written
|
|
mostly for ASUS KCMA-D8 and KGPE-D16 mainboards, where previously we only
|
|
provided 2MiB ROM images in libreboot, but we now provide 16MiB ROM images.
|
|
Other sizes are not provided because in practise, someone upgrading one of
|
|
these chips will just use a 16MiB one. Larger sizes are available, but 16MiB
|
|
is the maximum that you can use on all currently supported libreboot systems
|
|
that use SPI flash.
|
|
|
|
Required for ROMs where the ROM image is smaller than the flash chip
|
|
(e.g. writing a 2MiB ROM to a 16MiB flash chip).
|
|
|
|
Create an empty (00 bytes) file with a size the difference between
|
|
the ROM and flash chip. The case above, for example:
|
|
|
|
truncate -s +14MiB pad.bin
|
|
|
|
For x86 descriptorless images you need to pad from the *beginning* of the ROM:
|
|
|
|
cat pad.bin yourrom.rom > yourrom.rom.new
|
|
|
|
For ARM and x86 with intel flash descriptor, you need to pad after the image:
|
|
|
|
cat yourrom.rom pad.bin > yourrom.rom.new
|
|
|
|
Flash the resulting file. Note that cbfstool will not be able to
|
|
operate on images padded this way so make sure to make all changes to
|
|
the image, including runtime config, before padding.
|
|
|
|
To remove padding, for example after reading it off the flash chip,
|
|
simply use dd(1) to extract only the non-padded portion. Continuing with the
|
|
examples above, in order to extract a 2MiB x86 descriptorless ROM from a
|
|
padded 16MiB image do the following:
|
|
|
|
dd if=flashprogread.rom of=yourrom.rom ibs=14MiB skip=1
|
|
|
|
With padding removed cbfstool will be able to operate on the image as usual.
|
|
|
|
Do I need to install a bootloader when installing a distribution?
|
|
---------------------------------------------------------------------------------------------------
|
|
|
|
Most libreboot setups integrate the GRUB bootloader already, as a
|
|
*[payload](http://www.coreboot.org/Payloads)*. This means that the GRUB
|
|
bootloader is actually *flashed*, as part of the boot firmware
|
|
(libreboot). This means that you do not have to install a boot loader on
|
|
the HDD or SSD, when installing a new distribution. You'll be able to
|
|
boot just fine, using the bootloader (GRUB) that is in the flash chip.
|
|
|
|
This also means that even if you remove the HDD or SSD, you'll still
|
|
have a functioning bootloader installed which could be used to boot a
|
|
live distribution installer from a USB flash drive. See
|
|
[How to install Linux on a libreboot system](../docs/linux/grub_boot_installer.md)
|
|
|
|
Nowadays, other payloads are also provided. If you're using the SeaBIOS payload,
|
|
then the normal MBR bootsector is used on your HDD or SSD, like you would
|
|
expect. So the above paragraphs only apply to the GRUB payload.
|
|
|
|
Do I need to re-flash when I re-install a distribution?
|
|
-------------------------------------------------------------------------------------------
|
|
|
|
Not anymore. Recent versions of libreboot (using the GRUB payload) will
|
|
automatically switch to a GRUB configuration on the HDD or SSD, if it
|
|
exists. You can also load a different GRUB configuration, from any kind
|
|
of device that is supported in GRUB (such as a USB flash drive). For
|
|
more information, see
|
|
[Modifying the GRUB Configuration in libreboot Systems](../docs/linux/grub_cbfs.md)
|
|
|
|
If you're using the SeaBIOS payload, it's even easier. It works just like you
|
|
would expect. SeaBIOS implements a normal x86 BIOS interface.
|
|
|
|
What does a flash chip look like?
|
|
-----------------------------------------------------------------
|
|
|
|
You can find photos of various chip types on the following page:\
|
|
[External 25xx NOR flashing guide](docs/install/spi.md)
|
|
|
|
Inability to modprobe thinkpad\_acpi on Haswell
|
|
===============================================
|
|
|
|
This was reported by a user, running Debian 11 with
|
|
kernel `5.19.0-0.deb11.2-amd64`. The `thinkpad_acpi` module was not loading,
|
|
with the following message:
|
|
|
|
```
|
|
modprobe: ERROR: could not insert 'thinkpad_acpi': "No such device"
|
|
```
|
|
|
|
Battery info in `/sys` was absent, because of this. The user reported that
|
|
the following workaround was effective (in Debian).
|
|
|
|
Add this line to `/etc/modprobe.d/thinkpad_acpi.conf`:
|
|
|
|
```
|
|
options thinkpad_acpi force_load=1
|
|
```
|
|
|
|
tlp
|
|
---
|
|
|
|
You can install the `tlp` package and start that service. For example, on
|
|
Debian:
|
|
|
|
```
|
|
apt-get install tlp tlp-rdw
|
|
systemctl enable tlp
|
|
systemctl start tlp
|
|
```
|
|
|
|
Now read the manual:
|
|
|
|
```
|
|
man tlp-stat
|
|
```
|
|
|
|
As root, you can do:
|
|
|
|
```
|
|
tlp-stat -b
|
|
```
|
|
|
|
This will provide information about the battery.
|
|
|
|
What other firmware exists outside of libreboot?
|
|
==================================================
|
|
|
|
You can also read information about these in the [libreboot binary blob
|
|
reduction policy](news/policy.md), where it goes into more detail about some
|
|
of them.
|
|
|
|
### External GPUs
|
|
|
|
The Video BIOS is present on most video cards. For integrated graphics,
|
|
the VBIOS (special kind of OptionROM) is usually embedded
|
|
in the main boot firmware. For external graphics, the VBIOS is
|
|
usually on the graphics card itself. This is usually proprietary; the
|
|
only difference is that SeaBIOS can execute it (alternatively, you embed it
|
|
in a coreboot ROM image and have coreboot executes it, if you use a
|
|
different payload, such as GRUB).
|
|
|
|
The *coreboot project* provides free initialization code, on many boards, and
|
|
libreboot will use this code when it is available, depending on the configuration.
|
|
|
|
In configurations where SeaBIOS and native GPU init are used together,
|
|
a special shim VBIOS is added that uses coreboot linear framebuffer.
|
|
|
|
### EC (embedded controller) firmware
|
|
|
|
Most (all?) laptops have this. The EC (embedded controller) is a small,
|
|
separate processor that basically processes inputs/outputs that are
|
|
specific to laptops. For example:
|
|
|
|
- When you flick the radio on/off switch, the EC will enable/disable
|
|
the wireless devices (wifi, bluetooth, etc) and enable/disable an
|
|
LED that indicates whether it's turned on or not
|
|
- Listen to another chip that produces temperature readings, adjusting
|
|
fan speeds accordingly (or turning the fan(s) on/off).
|
|
- Takes certain inputs from the keyboard, e.g. brightness up/down,
|
|
volume up/down.
|
|
- Detect when the lid is closed or opened, and send a signal
|
|
indicating this.
|
|
- Etc.
|
|
|
|
EC is present on nearly all laptops. Other devices use, depending on complexity,
|
|
either EC or variant with firmware in Mask ROM - SuperIO.
|
|
|
|
### HDD/SSD firmware
|
|
|
|
HDDs and SSDs have firmware in them, intended to handle the internal
|
|
workings of the device while exposing a simple, standard interface (such
|
|
as AHCI/SATA) that the OS software can use, generically. This firmware
|
|
is transparent to the user of the drive.
|
|
|
|
HDDs and SSDs are quite complex, and these days contain quite complex
|
|
hardware which is even capable of running an entire operating system (by
|
|
this, we mean that the drive itself is capable of running its own
|
|
embedded OS), even Linux.
|
|
|
|
SSDs and HDDs are a special case, since they are persistent storage
|
|
devices as well as computers.
|
|
|
|
Example attack that malicious firmware could do: substitute your SSH
|
|
keys, allowing unauthorized remote access by an unknown adversary. Or
|
|
maybe substitute your GPG keys. SATA drives can also have DMA (through
|
|
the controller), which means that they could read from system memory;
|
|
the drive can have its own hidden storage, theoretically, where it could
|
|
read your LUKS keys and store them unencrypted for future retrieval by
|
|
an adversary.
|
|
|
|
With proper IOMMU and use of USB instead of SATA, it might be possible
|
|
to mitigate any DMA-related issues that could arise.
|
|
|
|
Some proof of concepts have been demonstrated. For HDDs:
|
|
<https://spritesmods.com/?art=hddhack&page=1> For SSDs:
|
|
<http://www.bunniestudios.com/blog/?p=3554>
|
|
|
|
Viable free replacement firmware is currently unknown to exist. For
|
|
SSDs, the
|
|
[OpenSSD](https://web.archive.org/web/20220425071606/http://www.openssd-project.org/wiki/The_OpenSSD_Project)
|
|
project may be interesting.
|
|
|
|
Apparently, SATA drives themselves don't have DMA but can make use of
|
|
it through the controller. This
|
|
<http://web.archive.org/web/20170319043915/http://www.lttconn.com/res/lttconn/pdres/201005/20100521170123066.pdf>
|
|
(pages 388-414, 420-421, 427, 446-465, 492-522, 631-638) and this
|
|
<http://www.intel.co.uk/content/dam/www/public/us/en/documents/technical-specifications/serial-ata-ahci-spec-rev1_3.pdf>
|
|
(pages 59, 67, 94, 99).
|
|
|
|
The following is based on discussion with Peter Stuge (CareBear\\) in
|
|
the coreboot IRC channel on Friday, 18 September 2015, when
|
|
investigating whether the SATA drive itself can make use of DMA. The
|
|
following is based on the datasheets linked above:
|
|
|
|
According to those linked documents, FIS type 39h is *"DMA Activate FIS
|
|
- Device to Host"*. It mentions *"transfer of data from the host to
|
|
the device, and goes on to say: Upon receiving a DMA Activate, if the
|
|
host adapter's DMA controller has been programmed and armed, the host
|
|
adapter shall initiate the transmission of a Data FIS and shall transmit
|
|
in this FIS the data corresponding to the host memory regions indicated
|
|
by the DMA controller's context."* FIS is a protocol unit (Frame
|
|
Information Structure). Based on this, it seems that a drive can tell
|
|
the host controller that it would like for DMA to happen, but unless the
|
|
host software has already or will in the future set up this DMA transfer
|
|
then nothing happens. **A drive can also send DMA Setup**. If a DMA
|
|
Setup FIS is sent first, with the Auto-Activate bit set, then it is
|
|
already set up, and the drive can initiate DMA. The document goes on to
|
|
say *"Upon receiving a DMA Setup, the receiver of the FIS shall
|
|
validate the received DMA Setup request."* - in other words, the host
|
|
is supposed to validate; but maybe there's a bug there. The document
|
|
goes on to say *"The specific implementation of the buffer identifier
|
|
and buffer/address validation is not specified"* - so noone will
|
|
actually bother. *"the receiver of the FIS"* - in the case we're
|
|
considering, that's the host controller hardware in the chipset and/or
|
|
the kernel driver (most likely the kernel driver). All SATA devices have
|
|
flash-upgradeable firmware, which can usually be updated by running
|
|
software in your operating system; **malicious software running as root
|
|
could update this firmware, or the firmware could already be
|
|
malicious**. Your HDD or SSD is the perfect place for a malicious
|
|
adversary to install malware, because it's a persistent storage device
|
|
as well as a computer.
|
|
|
|
Based on this, it's safe to say that use of USB instead of SATA is
|
|
advisable if security is a concern. USB 2.0 has plenty of bandwidth for
|
|
many HDDs (a few high-end ones can use more bandwidth than USB 2.0 is
|
|
capable of), but for SSDs it might be problematic. USB 3.0 will provide more
|
|
reasonable performance, though note that depending on the system, you may have
|
|
to deal with binary vendor XHCI firmware in your kernel (if that bothers you).
|
|
|
|
Use of USB is also not an absolute guarantee of safety, so do beware.
|
|
The attack surface becomes much smaller, but a malicious drive could
|
|
still attempt a "fuzzing" attack (e.g. sending malformed USB
|
|
descriptors, which is how the tyrant DRM on the Playstation 3 was
|
|
broken, so that users could run their own operating system and run
|
|
unsigned code). (you're probably safe, unless there's a security flaw
|
|
in the USB library/driver that your OS uses. USB is generally considered
|
|
one of the safest protocols, precisely because USB devices have no DMA)
|
|
|
|
Other links:
|
|
|
|
- <https://www.vice.com/en_us/article/ypwkwk/the-nsas-undetectable-hard-drive-hack-was-first-demonstrated-a-year-ago>
|
|
|
|
It is recommended that you use full disk encryption, on HDDs connected
|
|
via USB. There are several adapters available online, that allow you to
|
|
connect SATA HDDs via USB, and Libreboot is capable of booting from them the
|
|
normal way. Consult the documentation for your Linux/BSD operating system, so
|
|
that you can know how to install it with *full disk encryption*.
|
|
|
|
The current theory (unproven) is that this will at least prevent
|
|
malicious drives from wrongly manipulating data being read from or
|
|
written to the drive, since it can't access your LUKS key if it's only
|
|
ever in RAM, provided that the HDD doesn't have DMA (USB devices don't
|
|
have DMA). The worst that it could do in this case is destroy your data.
|
|
Of course, you should make sure never to put any keyfiles in the LUKS
|
|
header. **Take what this paragraph says with a pinch of salt. This is
|
|
still under discussion, and none of this is proven.**
|
|
|
|
### NIC (ethernet controller)
|
|
|
|
Ethernet NICs will typically run firmware inside, which is responsible
|
|
for initializing the device internally. Theoretically, it could be
|
|
configured to drop packets, or even modify them.
|
|
|
|
With proper IOMMU, it might be possible to mitigate the DMA-related
|
|
issues. A USB NIC can also be used, which does not have DMA.
|
|
|
|
### CPU microcode
|
|
|
|
Microcode configures logic gate arrays in a microprocessor, to implement the
|
|
instruction set architecture. Special *decoders* in the microprocessor will
|
|
configure the circuitry, based on that microcode.
|
|
|
|
The [libreboot blob reduction policy](news/policy.md) goes into great detail
|
|
about microcode.
|
|
|
|
### Sound card
|
|
|
|
Sound hardware (integrated or discrete) typically has firmware on it
|
|
(DSP) for processing input/output. Again, a USB DAC is a good
|
|
workaround.
|
|
|
|
### Webcam
|
|
|
|
Webcams have firmware integrated into them that process the image input
|
|
into the camera; adjusting focus, white balancing and so on. Can use USB
|
|
webcam hardware, to work around potential DMA issues; integrated webcams
|
|
(on laptops, for instance) are discouraged by the libreboot project, for
|
|
security reasons.
|
|
|
|
### USB host controller
|
|
|
|
USB host controllers require firmware. Sometimes, this has to be supplied
|
|
by coreboot itself.
|
|
|
|
### WWAN firmware
|
|
|
|
Some laptops might have a simcard reader in them, with a card for
|
|
handling WWAN, connecting to a 3g/4g (e.g. GSM) network. This is the
|
|
same technology used in mobile phones, for remote network access (e.g.
|
|
internet).
|
|
|
|
NOTE: not to be confused with wifi. Wifi is a different technology, and
|
|
entirely unrelated.
|
|
|
|
The baseband processor inside the WWAN chip will have its own embedded
|
|
operating system, most likely proprietary. Use of this technology also
|
|
implies the same privacy issues as with mobile phones (remote tracking
|
|
by the GSM network, by triangulating the signal).
|
|
|
|
On some laptops, these cards use USB (internally), so won't have DMA,
|
|
but it's still a massive freedom and privacy issue. If you have an
|
|
internal WWAN chip/card, the libreboot project recommends that you
|
|
disable and (ideally, if possible) physically remove the hardware. If
|
|
you absolutely must use this technology, an external USB dongle is much
|
|
better because it can be easily removed when you don't need it, thereby
|
|
disabling any external entities from tracking your location.
|
|
|
|
Use of ethernet or wifi is recommended, as opposed to mobile networks,
|
|
as these are generally much safer.
|
|
|
|
Operating Systems
|
|
=================
|
|
|
|
Can I use Linux?
|
|
--------------------------------------------------
|
|
|
|
Absolutely! It is well-tested in libreboot, and highly recommended. See
|
|
[installing Linux](../docs/linux/grub_boot_installer.md) and
|
|
[booting Linux](../docs/linux/grub_cbfs.md).
|
|
|
|
Any recent distribution should work, as long as it uses KMS (kernel mode
|
|
setting) for the graphics.
|
|
|
|
Fedora won't boot? (may also be applicable to Redhat/CentOS)
|
|
-----------------------------------------------------------
|
|
|
|
On Fedora, by default the grub.cfg tries to boot linux in 16-bit mode. You
|
|
just have to modify Fedora's GRUB configuration.
|
|
Refer to [the Linux page](docs/linux/).
|
|
|
|
Can I use BSD?
|
|
----------------------------------
|
|
|
|
Absolutely! The libreboot firmware has good support for FreeBSD, NetBSD and
|
|
OpenBSD. Other systems are untested, but should work just fine.
|
|
|
|
See:
|
|
[docs/bsd/](docs/bsd/)
|
|
|
|
Windows??
|
|
---------
|
|
|
|
Yes, you can use Windows 10 and 11. They are not officially supported and the
|
|
Libreboot project recommends that you *avoid* this choice, because Windows is
|
|
proprietary software. What this means is that you do *not* have the freedom
|
|
to use, study, adapt and share the software in any reasonable way. You are
|
|
entirely at the mercy of Microsoft, whose motive is profit, as opposed to the
|
|
general advancement of computer science and the welfare of everyone.
|
|
|
|
See: [What is Free Software?](https://writefreesoftware.org/learn)
|
|
|
|
In addition to being proprietary software, Windows is known to be full of bugs,
|
|
including *backdoors*. When you *use* Windows, it will send information about
|
|
you to third parties, used for a variety of purposes such as advertising, but
|
|
it's quite possible that three-letter agencies may also receive your data if
|
|
you use Windows.
|
|
|
|
For the sake of your freedom, you should never, ever use Windows. Use Linux or
|
|
BSD systems, which are well-supported. Anyway:
|
|
|
|
[Video of Windows 10 booting up](https://yewtu.be/watch?v=BWq6XnWKQnM)
|
|
|
|
[Video of Windows 11 booting up](https://yewtu.be/watch?v=OFHiMfVNNeA)
|
|
|
|
Of note: Windows 11 officially requires at least TPM 1.2 to be supported, and
|
|
it requires use of UEFI SecureBoot. To bypass this requirement, MajorGeeks has
|
|
a guide, see: <https://www.majorgeeks.com/content/page/bypass_tpm.html>
|
|
|
|
The person who tested this also stated that they were unable to perform an
|
|
in-place upgrade from 10 to 11, so they had to wipe the drive and perform a
|
|
clean (note: not clean, because Windows is full of NSA spyware) installation.
|
|
|
|
In both cases, as shown above, the Windows operating system was booting from
|
|
SeaBIOS, with the coreboot framebuffer initialised at startup, on an Intel GPU
|
|
initialised via coreboot's *libgfxinit*, on November 2023 versions of Libreboot.
|
|
We do not yet support booting with UEFI on x86 machines.
|
|
|
|
Are other operating systems compatible?
|
|
-------------------------------------------------------------------
|
|
|
|
Unknown. Perhaps so, but it's impossible to say without further testing.
|
|
|
|
What level of software freedom does libreboot give me?
|
|
===================================================
|
|
|
|
Please read the [libreboot binary blob minimalisation policy](news/policy.md).
|
|
|
|
Please also read:
|
|
[Software and hardware freedom status for each mainboard supported by
|
|
Libreboot](software-freedom.md)
|
|
|
|
The libreboot firmware provides host hardware initialisation inside ROM files,
|
|
that can be written to NOR flash, but on many systems there exist
|
|
a lot more small computers on the mainboard running blob firmware.
|
|
Some of them are not practicable to replace due to being located on Mask ROM.
|
|
Most laptops have EC (Embedded Controller) firmware, for example.
|
|
|
|
Besides software itself (embedded in ROM or not), most hardware
|
|
(from ICs to circuit boards) are not released under open source licenses.
|
|
We do not have a single device that can be considered be "100% free",
|
|
and such absolutes are nearly impossible to reach.
|
|
|
|
Notable vendor code present (example) (not a complete list):
|
|
|
|
* All devices
|
|
* SATA/PATA Hard Drive/Optical Disc Drive Firmware
|
|
([often contain powerful ARM based computer](
|
|
http://spritesmods.com/?art=hddhack&page=1))
|
|
* Pendrives and any USB peripherals - they contain a computer
|
|
with code running to at the very least handle the USB protocol
|
|
* ThinkPads:
|
|
* EC Firmware (H8S until including Sandy Bridge, later ARC based MEC16xx)
|
|
* TrackPoint Firmware (8051)
|
|
* Penabled devices contain µPD78F0514 MCU on wacom subboard,
|
|
and Atmega (AVR) on led indicator/button board
|
|
* Battery BMS, bq8030 (CoolRISC C816)
|
|
* Chomebooks C201PA/C100PA:
|
|
* Battery BMS, bq30z55
|
|
* Elan Touchpad
|
|
* eMMC [flash memory controller](https://en.wikipedia.org/wiki/Flash_memory_controller) firmware
|
|
|
|
One day, we will live in a world where anyone can get their own chips made,
|
|
including CPUs but also every other type of IC. Efforts to make homemade
|
|
chip fabrication a reality are now in their infancy, but such efforts do
|
|
exist, for example, the work done by Sam Zeloof and the Libre Silicon project:
|
|
|
|
* <https://www.youtube.com/channel/UC7E8-0Ou69hwScPW1_fQApA>
|
|
* <http://sam.zeloof.xyz/>
|
|
* <https://libresilicon.com/>
|
|
|
|
(Sam literally makes CPUs in his garage)
|
|
|
|
Where can I learn more about electronics
|
|
==========================================
|
|
|
|
* Basics of soldering and rework by PACE
|
|
Both series of videos are mandatory regardless of your soldering skill.
|
|
* [Basic Soldering](https://yewtu.be/playlist?list=PL926EC0F1F93C1837)
|
|
* [Rework and Repair](https://yewtu.be/playlist?list=PL958FF32927823D12)
|
|
The PACE series above covers classic techniques, but does not cover much
|
|
about *modern* electronics. For that, see:
|
|
* [iFixit microsoldering lessons, featuring Jessa
|
|
Jones](https://yewtu.be/playlist?list=PL4INaL5vWobD_CltiZXr7K46oJ33KvwBt)
|
|
* Also see youtube links below, especially Louis Rossman videos, to learn
|
|
a (lot) more.
|
|
* [edX course on basics of electronics](https://www.edx.org/course/circuits-and-electronics-1-basic-circuit-analysi-2)
|
|
In most countries contents of this course is covered during
|
|
middle and high school. It will also serve well to refresh your memory
|
|
if you haven't used that knowledge ever since.
|
|
* Impedance intro
|
|
* [Similiarities of Wave Behavior](https://yewtu.be/watch?v=DovunOxlY1k)
|
|
* [Reflections in tranmission line](https://yewtu.be/watch?v=y8GMH7vMAsQ)
|
|
* Stubs:
|
|
* [Wikipedia article on stubs](https://en.wikipedia.org/wiki/Stub_(electronics))
|
|
* [Polar Instruments article on stubs](http://www.polarinstruments.com/support/si/AP8166.html)
|
|
With external SPI flashing we only care about unintended PCB stubs
|
|
* [How to accurately measure header/connector pitch](https://www.microcontrollertips.com/accurately-measure-headerconnector-pitch/)
|
|
* Other YouTube channels with useful content about electronics
|
|
* [EEVblog](https://yewtu.be/channel/UC2DjFE7Xf11URZqWBigcVOQ)
|
|
(generally about electronics, reviews about equipment, etc, some
|
|
repair videos)
|
|
* [Louis Rossmann](https://yewtu.be/channel/UCl2mFZoRqjw_ELax4Yisf6w)
|
|
(right to repair advocacy, lots of macbook repair videos)
|
|
* [mikeselectricstuff](https://yewtu.be/channel/UCcs0ZkP_as4PpHDhFcmCHyA)
|
|
* [bigclive](https://yewtu.be/channel/UCtM5z2gkrGRuWd0JQMx76qA)
|
|
* [ElectroBOOM](https://yewtu.be/channel/UCJ0-OtVpF0wOKEqT2Z1HEtA)
|
|
(he blows stuff up, and shows you how not to do that)
|
|
* [Jeri Ellsworth](https://yewtu.be/user/jeriellsworth/playlists)
|
|
(has a video showing how to make a *transistor* yourself)
|
|
* [Sam Zeloof](https://yewtu.be/channel/UC7E8-0Ou69hwScPW1_fQApA)
|
|
(Sam literally makes CPUs in his garage, inspired by Jeri Ellsworth's
|
|
work with transistors)
|
|
* [Ben Eater](https://eater.net/) (shows how to build an 8-bit CPU from scratch,
|
|
also does things with MOS 6502)
|
|
(also shows how to make other things like graphics chips, teaches networking
|
|
concepts) - check out Ben's videos! <https://redirect.invidious.io/beneater>
|
|
* [iPad Rehab with Jessa Jones](https://yewtu.be/channel/UCPjp41qeXe1o_lp1US9TpWA)
|
|
(very precise soldering. she does repairs on mobile phones and such, also
|
|
featured in iFixit's series about getting into component repairs)
|
|
* Boardview files can be open with [OpenBoardview](https://github.com/OpenBoardView/OpenBoardView),
|
|
which is libre software under MIT license.
|
|
|
|
Use of `yt-dlp` (an enhanced fork of `youtube-dl`) is recommended for links
|
|
to `youtube.com`. See: <https://github.com/yt-dlp/yt-dlp>
|
|
|
|
Lastly the most important message to everybody gaining this wonderful new hobby - [Secret to Learning Electronics](https://yewtu.be/watch?v=xhQ7d3BK3KQ)
|